Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915536774> ?p ?o ?g. }
- W2915536774 endingPage "65" @default.
- W2915536774 startingPage "55" @default.
- W2915536774 abstract "Statistical crop models have been a major tool in identifying critical drivers of crop yield, forecasting short-term crop yield, and assessing long-term climate change impacts on agricultural productivity. However, few studies focus specifically on fundamental issues encountered in developing a high-performance statistical crop model for yield prediction. Such issues include: how to select predictors and fitting functions, how to effectively address the spatiotemporal scale issue, weather it is beneficial to include satellite data as explanatory variables, and how to reconcile different model evaluation procedures. In this study, we present our statistical modeling practices for predicting rainfed corn yield in the Midwest U.S. and address the aforementioned issues through comprehensive diagnostic analysis. Our results show that vapor pressure deficit and precipitation at a monthly scale, in spline form with customized knots, define the “Best Climate-only” model among alternative climate variables (e.g., air temperature) and fitting functions (e.g., linear or polynomial), with an out-of-sample (leave-one-year-out) median R2 of 0.79 and RMSE of 1.04 t/ha (16.6 bu/acre) from 2003 to 2016. Satellite variables, such as MODIS land surface temperature and Enhanced Vegetation Index (EVI), when used as predictors alone, reduce the model’s RMSE to 0.93 t/ha (14.8 bu/acre). Adding satellite variables (i.e., EVI in polynomial form) to the “Best Climate-only” model gives the “Best Climate + EVI” model, which has the highest prediction performance of this study, with a median R2 of 0.85 and RMSE of 0.90 t/ha (14.3 bu/acre). Such a model trained using all data (so-called “global model”) in most cases leads to better predictions than the state-specific trained models. However, the global model’s prediction performance exhibits considerable regional and interannual variations. The regional-varying performance is related to states’ spatiotemporal variability in yield, where states with larger spatial yield variability show higher R2, and states with smaller temporal yield variability show lower RMSE. Interannual variations in prediction performance are linked to yield variability and degree of wetness, with higher R2 in years with larger yield variability but increasingly larger RMSE toward wetter years and extreme dry years. These identified spatial and temporal variations of model’s performance, together with inconsistent evaluation practices undermine the comparability between statistical modeling studies. Alleviating such comparability issues requires more transparency and open data practices. The statistical model presented in this study provides a benchmark for further development and can be applied to future research related to yield prediction or assessment of climate change impact." @default.
- W2915536774 created "2019-03-02" @default.
- W2915536774 creator A5029520920 @default.
- W2915536774 creator A5034995105 @default.
- W2915536774 creator A5053935458 @default.
- W2915536774 creator A5061177999 @default.
- W2915536774 creator A5073721257 @default.
- W2915536774 creator A5074353715 @default.
- W2915536774 creator A5090733906 @default.
- W2915536774 date "2019-03-01" @default.
- W2915536774 modified "2023-10-16" @default.
- W2915536774 title "Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the U.S" @default.
- W2915536774 cites W1209269186 @default.
- W2915536774 cites W1902852050 @default.
- W2915536774 cites W1966334841 @default.
- W2915536774 cites W1966365112 @default.
- W2915536774 cites W1969256532 @default.
- W2915536774 cites W1980703241 @default.
- W2915536774 cites W1987415163 @default.
- W2915536774 cites W2015037454 @default.
- W2915536774 cites W2035196702 @default.
- W2915536774 cites W2040818056 @default.
- W2915536774 cites W2043153600 @default.
- W2915536774 cites W2048447384 @default.
- W2915536774 cites W2056251274 @default.
- W2915536774 cites W2061172255 @default.
- W2915536774 cites W2065562425 @default.
- W2915536774 cites W2066122301 @default.
- W2915536774 cites W2068914580 @default.
- W2915536774 cites W2070576684 @default.
- W2915536774 cites W2071110539 @default.
- W2915536774 cites W2072490792 @default.
- W2915536774 cites W2079350221 @default.
- W2915536774 cites W2093902012 @default.
- W2915536774 cites W2117162642 @default.
- W2915536774 cites W2118921617 @default.
- W2915536774 cites W2122430292 @default.
- W2915536774 cites W2123583857 @default.
- W2915536774 cites W2161994757 @default.
- W2915536774 cites W2167443344 @default.
- W2915536774 cites W2170797800 @default.
- W2915536774 cites W2173773103 @default.
- W2915536774 cites W2189719333 @default.
- W2915536774 cites W2207854002 @default.
- W2915536774 cites W2322166108 @default.
- W2915536774 cites W2344866513 @default.
- W2915536774 cites W2400450278 @default.
- W2915536774 cites W2462583090 @default.
- W2915536774 cites W2510757963 @default.
- W2915536774 cites W2520535592 @default.
- W2915536774 cites W2521677216 @default.
- W2915536774 cites W2552805558 @default.
- W2915536774 cites W2573916274 @default.
- W2915536774 cites W2610651111 @default.
- W2915536774 cites W2741683788 @default.
- W2915536774 cites W2742109465 @default.
- W2915536774 cites W2762524281 @default.
- W2915536774 cites W2778541761 @default.
- W2915536774 cites W2807424345 @default.
- W2915536774 cites W2810045082 @default.
- W2915536774 cites W2889668950 @default.
- W2915536774 cites W2942591112 @default.
- W2915536774 doi "https://doi.org/10.1016/j.fcr.2019.02.005" @default.
- W2915536774 hasPublicationYear "2019" @default.
- W2915536774 type Work @default.
- W2915536774 sameAs 2915536774 @default.
- W2915536774 citedByCount "62" @default.
- W2915536774 countsByYear W29155367742019 @default.
- W2915536774 countsByYear W29155367742020 @default.
- W2915536774 countsByYear W29155367742021 @default.
- W2915536774 countsByYear W29155367742022 @default.
- W2915536774 countsByYear W29155367742023 @default.
- W2915536774 crossrefType "journal-article" @default.
- W2915536774 hasAuthorship W2915536774A5029520920 @default.
- W2915536774 hasAuthorship W2915536774A5034995105 @default.
- W2915536774 hasAuthorship W2915536774A5053935458 @default.
- W2915536774 hasAuthorship W2915536774A5061177999 @default.
- W2915536774 hasAuthorship W2915536774A5073721257 @default.
- W2915536774 hasAuthorship W2915536774A5074353715 @default.
- W2915536774 hasAuthorship W2915536774A5090733906 @default.
- W2915536774 hasBestOaLocation W29155367741 @default.
- W2915536774 hasConcept C105795698 @default.
- W2915536774 hasConcept C107054158 @default.
- W2915536774 hasConcept C114289077 @default.
- W2915536774 hasConcept C118518473 @default.
- W2915536774 hasConcept C126343540 @default.
- W2915536774 hasConcept C127413603 @default.
- W2915536774 hasConcept C132651083 @default.
- W2915536774 hasConcept C134121241 @default.
- W2915536774 hasConcept C139945424 @default.
- W2915536774 hasConcept C142724271 @default.
- W2915536774 hasConcept C153294291 @default.
- W2915536774 hasConcept C166957645 @default.
- W2915536774 hasConcept C168754636 @default.
- W2915536774 hasConcept C18903297 @default.
- W2915536774 hasConcept C191897082 @default.
- W2915536774 hasConcept C192562407 @default.
- W2915536774 hasConcept C205649164 @default.