Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915540904> ?p ?o ?g. }
- W2915540904 endingPage "481" @default.
- W2915540904 startingPage "481" @default.
- W2915540904 abstract "This study focuses on the comparison of hybrid methods of estimation of biophysical variables such as leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fraction of vegetation cover (FVC), and canopy chlorophyll content (CCC) from Sentinel-2 satellite data. Different machine learning algorithms were trained with simulated spectra generated by the physically-based radiative transfer model PROSAIL and subsequently applied to Sentinel-2 reflectance spectra. The algorithms were assessed against a standard operational approach, i.e., the European Space Agency (ESA) Sentinel Application Platform (SNAP) toolbox, based on neural networks. Since kernel-based algorithms have a heavy computational cost when trained with large datasets, an active learning (AL) strategy was explored to try to alleviate this issue. Validation was carried out using ground data from two study sites: one in Shunyi (China) and the other in Maccarese (Italy). In general, the performance of the algorithms was consistent for the two study sites, though a different level of accuracy was found between the two sites, possibly due to slightly different ground sampling protocols and the range and variability of the values of the biophysical variables in the two ground datasets. For LAI estimation, the best ground validation results were obtained for both sites using least squares linear regression (LSLR) and partial least squares regression, with the best performances values of R2 of 0.78, rott mean squared error (RMSE) of 0.68 m2 m−2 and a relative RMSE (RRMSE) of 19.48% obtained in the Maccarese site with LSLR. The best results for LCC were obtained using Random Forest Tree Bagger (RFTB) and Bagging Trees (BagT) with the best performances obtained in Maccarese using RFTB (R2 = 0.26, RMSE = 8.88 μg cm−2, RRMSE = 17.43%). Gaussian Process Regression (GPR) was the best algorithm for all variables only in the cross-validation phase, but not in the ground validation, where it ranked as the best only for FVC in Maccarese (R2 = 0.90, RMSE = 0.08, RRMSE = 9.86%). It was found that the AL strategy was more efficient than the random selection of samples for training the GPR algorithm." @default.
- W2915540904 created "2019-03-02" @default.
- W2915540904 creator A5011054993 @default.
- W2915540904 creator A5018002301 @default.
- W2915540904 creator A5028303505 @default.
- W2915540904 creator A5036811508 @default.
- W2915540904 creator A5049898739 @default.
- W2915540904 creator A5051178683 @default.
- W2915540904 creator A5067377025 @default.
- W2915540904 creator A5069930488 @default.
- W2915540904 date "2019-02-26" @default.
- W2915540904 modified "2023-10-16" @default.
- W2915540904 title "A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2" @default.
- W2915540904 cites W1772504446 @default.
- W2915540904 cites W1968235624 @default.
- W2915540904 cites W1978160572 @default.
- W2915540904 cites W1986812364 @default.
- W2915540904 cites W1987607942 @default.
- W2915540904 cites W1988515463 @default.
- W2915540904 cites W2007342648 @default.
- W2915540904 cites W2012686349 @default.
- W2915540904 cites W2014955600 @default.
- W2915540904 cites W2024046085 @default.
- W2915540904 cites W2025199302 @default.
- W2915540904 cites W2030078894 @default.
- W2915540904 cites W2051128904 @default.
- W2915540904 cites W2052256290 @default.
- W2915540904 cites W2058312673 @default.
- W2915540904 cites W2065772955 @default.
- W2915540904 cites W2069883641 @default.
- W2915540904 cites W2073842304 @default.
- W2915540904 cites W2074464158 @default.
- W2915540904 cites W2076532457 @default.
- W2915540904 cites W2081887174 @default.
- W2915540904 cites W2089441588 @default.
- W2915540904 cites W2097092607 @default.
- W2915540904 cites W2101478587 @default.
- W2915540904 cites W2114753915 @default.
- W2915540904 cites W2121025745 @default.
- W2915540904 cites W2127406961 @default.
- W2915540904 cites W2130670721 @default.
- W2915540904 cites W2130995459 @default.
- W2915540904 cites W2144212877 @default.
- W2915540904 cites W2146514102 @default.
- W2915540904 cites W2152164823 @default.
- W2915540904 cites W2155482699 @default.
- W2915540904 cites W2156468842 @default.
- W2915540904 cites W2158863190 @default.
- W2915540904 cites W2166312616 @default.
- W2915540904 cites W2166684966 @default.
- W2915540904 cites W221493477 @default.
- W2915540904 cites W2317582304 @default.
- W2915540904 cites W2404939661 @default.
- W2915540904 cites W2461497717 @default.
- W2915540904 cites W2517171266 @default.
- W2915540904 cites W2531213996 @default.
- W2915540904 cites W2609044008 @default.
- W2915540904 cites W2621112468 @default.
- W2915540904 cites W2806394060 @default.
- W2915540904 cites W2883006890 @default.
- W2915540904 cites W2911964244 @default.
- W2915540904 cites W4212883601 @default.
- W2915540904 cites W61452412 @default.
- W2915540904 cites W633320881 @default.
- W2915540904 doi "https://doi.org/10.3390/rs11050481" @default.
- W2915540904 hasPublicationYear "2019" @default.
- W2915540904 type Work @default.
- W2915540904 sameAs 2915540904 @default.
- W2915540904 citedByCount "87" @default.
- W2915540904 countsByYear W29155409042019 @default.
- W2915540904 countsByYear W29155409042020 @default.
- W2915540904 countsByYear W29155409042021 @default.
- W2915540904 countsByYear W29155409042022 @default.
- W2915540904 countsByYear W29155409042023 @default.
- W2915540904 crossrefType "journal-article" @default.
- W2915540904 hasAuthorship W2915540904A5011054993 @default.
- W2915540904 hasAuthorship W2915540904A5018002301 @default.
- W2915540904 hasAuthorship W2915540904A5028303505 @default.
- W2915540904 hasAuthorship W2915540904A5036811508 @default.
- W2915540904 hasAuthorship W2915540904A5049898739 @default.
- W2915540904 hasAuthorship W2915540904A5051178683 @default.
- W2915540904 hasAuthorship W2915540904A5067377025 @default.
- W2915540904 hasAuthorship W2915540904A5069930488 @default.
- W2915540904 hasBestOaLocation W29155409041 @default.
- W2915540904 hasConcept C105795698 @default.
- W2915540904 hasConcept C11413529 @default.
- W2915540904 hasConcept C119857082 @default.
- W2915540904 hasConcept C127413603 @default.
- W2915540904 hasConcept C131366478 @default.
- W2915540904 hasConcept C139945424 @default.
- W2915540904 hasConcept C142724271 @default.
- W2915540904 hasConcept C146978453 @default.
- W2915540904 hasConcept C183688256 @default.
- W2915540904 hasConcept C19269812 @default.
- W2915540904 hasConcept C205649164 @default.
- W2915540904 hasConcept C22354355 @default.
- W2915540904 hasConcept C25989453 @default.
- W2915540904 hasConcept C2776133958 @default.