Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915678888> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2915678888 abstract "Recent work of Bambozzi, Ben-Bassat, and Kremnitzer suggests that derived analytic geometry over a valued field k can be modelled as geometry relative to the quasi-abelian category of Banach spaces, or rather its completion Ind(Bank). In this thesis we develop a robust theory of homotopical algebra in Ch(E) for E any sufficiently 'nice' quasi-abelian, or even exact, category. Firstly we provide sufficient conditions on weakly idempotent complete exact categories E such that various categories of chain complexes in E are equipped with projective model structures. In particular we show that as soon as E has enough projectives, the category Ch+(E) of bounded below complexes is equipped with a projective model structure. In the case that E also admits all kernels we show that it is also true of Ch≥0(E), and that a generalisation of the Dold-Kan correspondence holds. Supplementing the existence of kernels with a condition on the existence and exactness of certain direct limit functors guarantees that the category of unbounded chain complexes Ch(E) also admits a projective model structure. When E is monoidal we also examine when these model structures are monoidal. We then develop the homotopy theory of algebras in Ch(E). In particular we show, under very general conditions, that categories of operadic algebras in Ch(E) can be equipped with transferred model structures. Specialising to quasi-abelian categories we prove our main theorem, which is a vast generalisation of Koszul duality. We conclude by defining analytic extensions of the Koszul dual of a Lie algebra in Ind(Bank)." @default.
- W2915678888 created "2019-03-02" @default.
- W2915678888 creator A5006457925 @default.
- W2915678888 date "2018-01-01" @default.
- W2915678888 modified "2023-09-23" @default.
- W2915678888 title "Exact categories, Koszul duality, and derived analytic algebra" @default.
- W2915678888 hasPublicationYear "2018" @default.
- W2915678888 type Work @default.
- W2915678888 sameAs 2915678888 @default.
- W2915678888 citedByCount "0" @default.
- W2915678888 crossrefType "dissertation" @default.
- W2915678888 hasAuthorship W2915678888A5006457925 @default.
- W2915678888 hasConcept C109593458 @default.
- W2915678888 hasConcept C128520899 @default.
- W2915678888 hasConcept C131359564 @default.
- W2915678888 hasConcept C134306372 @default.
- W2915678888 hasConcept C134565946 @default.
- W2915678888 hasConcept C136170076 @default.
- W2915678888 hasConcept C156772000 @default.
- W2915678888 hasConcept C18364862 @default.
- W2915678888 hasConcept C186921422 @default.
- W2915678888 hasConcept C202444582 @default.
- W2915678888 hasConcept C2778023678 @default.
- W2915678888 hasConcept C33923547 @default.
- W2915678888 hasConcept C34388435 @default.
- W2915678888 hasConcept C5961521 @default.
- W2915678888 hasConcept C7879355 @default.
- W2915678888 hasConcept C79236096 @default.
- W2915678888 hasConceptScore W2915678888C109593458 @default.
- W2915678888 hasConceptScore W2915678888C128520899 @default.
- W2915678888 hasConceptScore W2915678888C131359564 @default.
- W2915678888 hasConceptScore W2915678888C134306372 @default.
- W2915678888 hasConceptScore W2915678888C134565946 @default.
- W2915678888 hasConceptScore W2915678888C136170076 @default.
- W2915678888 hasConceptScore W2915678888C156772000 @default.
- W2915678888 hasConceptScore W2915678888C18364862 @default.
- W2915678888 hasConceptScore W2915678888C186921422 @default.
- W2915678888 hasConceptScore W2915678888C202444582 @default.
- W2915678888 hasConceptScore W2915678888C2778023678 @default.
- W2915678888 hasConceptScore W2915678888C33923547 @default.
- W2915678888 hasConceptScore W2915678888C34388435 @default.
- W2915678888 hasConceptScore W2915678888C5961521 @default.
- W2915678888 hasConceptScore W2915678888C7879355 @default.
- W2915678888 hasConceptScore W2915678888C79236096 @default.
- W2915678888 hasLocation W29156788881 @default.
- W2915678888 hasOpenAccess W2915678888 @default.
- W2915678888 hasPrimaryLocation W29156788881 @default.
- W2915678888 hasRelatedWork W1580934751 @default.
- W2915678888 hasRelatedWork W1728442826 @default.
- W2915678888 hasRelatedWork W1816525881 @default.
- W2915678888 hasRelatedWork W1842093916 @default.
- W2915678888 hasRelatedWork W1993700317 @default.
- W2915678888 hasRelatedWork W2121510182 @default.
- W2915678888 hasRelatedWork W2331952733 @default.
- W2915678888 hasRelatedWork W2555838950 @default.
- W2915678888 hasRelatedWork W2592308502 @default.
- W2915678888 hasRelatedWork W2766163324 @default.
- W2915678888 hasRelatedWork W2785284721 @default.
- W2915678888 hasRelatedWork W2821547096 @default.
- W2915678888 hasRelatedWork W2908934531 @default.
- W2915678888 hasRelatedWork W2920839334 @default.
- W2915678888 hasRelatedWork W2949072469 @default.
- W2915678888 hasRelatedWork W2949936963 @default.
- W2915678888 hasRelatedWork W2963985228 @default.
- W2915678888 hasRelatedWork W2982444608 @default.
- W2915678888 hasRelatedWork W3105187893 @default.
- W2915678888 hasRelatedWork W3151875635 @default.
- W2915678888 isParatext "false" @default.
- W2915678888 isRetracted "false" @default.
- W2915678888 magId "2915678888" @default.
- W2915678888 workType "dissertation" @default.