Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915683453> ?p ?o ?g. }
- W2915683453 endingPage "2550" @default.
- W2915683453 startingPage "2537" @default.
- W2915683453 abstract "Sparse coding-based anomaly detection has shown promising performance, of which the keys are feature learning, sparse representation, and dictionary learning. In this paper, we propose a new neural network for anomaly detection (termed AnomalyNet) by deeply achieving feature learning, sparse representation, and dictionary learning in three joint neural processing blocks. Specifically, to learn better features, we design a motion fusion block accompanied by a feature transfer block to enjoy the advantages of eliminating noisy background, capturing motion, and alleviating data deficiency. Furthermore, to address some disadvantages (e.g., nonadaptive updating) of the existing sparse coding optimizers and embrace the merits of neural network (e.g., parallel computing), we design a novel recurrent neural network to learn sparse representation and dictionary by proposing an adaptive iterative hard-thresholding algorithm (adaptive ISTA) and reformulating the adaptive ISTA as a new long short-term memory (LSTM). To the best of our knowledge, this could be one of the first works to bridge the$ell _{1}$ -solver and LSTM and may provide novel insight into understanding LSTM and model-based optimization (or named differentiable programming), as well as sparse coding-based anomaly detection. Extensive experiments show the state-of-the-art performance of our method in the abnormal events detection task." @default.
- W2915683453 created "2019-03-02" @default.
- W2915683453 creator A5001599295 @default.
- W2915683453 creator A5015477789 @default.
- W2915683453 creator A5015639955 @default.
- W2915683453 creator A5022800038 @default.
- W2915683453 creator A5035554947 @default.
- W2915683453 creator A5045125183 @default.
- W2915683453 date "2019-10-01" @default.
- W2915683453 modified "2023-10-14" @default.
- W2915683453 title "AnomalyNet: An Anomaly Detection Network for Video Surveillance" @default.
- W2915683453 cites W1507780841 @default.
- W2915683453 cites W1595717062 @default.
- W2915683453 cites W1931450083 @default.
- W2915683453 cites W1967456674 @default.
- W2915683453 cites W1980287119 @default.
- W2915683453 cites W1980454827 @default.
- W2915683453 cites W2012931101 @default.
- W2915683453 cites W2016053056 @default.
- W2915683453 cites W2021659075 @default.
- W2915683453 cites W2041390734 @default.
- W2915683453 cites W2095640719 @default.
- W2915683453 cites W2116861100 @default.
- W2915683453 cites W2117539524 @default.
- W2915683453 cites W2122361470 @default.
- W2915683453 cites W2125105611 @default.
- W2915683453 cites W2129131372 @default.
- W2915683453 cites W2129638195 @default.
- W2915683453 cites W2130349088 @default.
- W2915683453 cites W2138092272 @default.
- W2915683453 cites W2140233853 @default.
- W2915683453 cites W2151693816 @default.
- W2915683453 cites W2154332973 @default.
- W2915683453 cites W2161969291 @default.
- W2915683453 cites W2163612318 @default.
- W2915683453 cites W2164261375 @default.
- W2915683453 cites W2164489414 @default.
- W2915683453 cites W2194775991 @default.
- W2915683453 cites W2294970404 @default.
- W2915683453 cites W2296663812 @default.
- W2915683453 cites W2341058432 @default.
- W2915683453 cites W2462996230 @default.
- W2915683453 cites W2507130172 @default.
- W2915683453 cites W2540481276 @default.
- W2915683453 cites W2560335610 @default.
- W2915683453 cites W2579718262 @default.
- W2915683453 cites W2587789887 @default.
- W2915683453 cites W2599354622 @default.
- W2915683453 cites W2753526808 @default.
- W2915683453 cites W2763384612 @default.
- W2915683453 cites W2777342313 @default.
- W2915683453 cites W2799787995 @default.
- W2915683453 cites W2809034148 @default.
- W2915683453 cites W2893415549 @default.
- W2915683453 cites W2911189325 @default.
- W2915683453 cites W2963061824 @default.
- W2915683453 cites W2963102887 @default.
- W2915683453 cites W2963541464 @default.
- W2915683453 cites W2963610939 @default.
- W2915683453 cites W2964232409 @default.
- W2915683453 cites W3102903867 @default.
- W2915683453 doi "https://doi.org/10.1109/tifs.2019.2900907" @default.
- W2915683453 hasPublicationYear "2019" @default.
- W2915683453 type Work @default.
- W2915683453 sameAs 2915683453 @default.
- W2915683453 citedByCount "180" @default.
- W2915683453 countsByYear W29156834532019 @default.
- W2915683453 countsByYear W29156834532020 @default.
- W2915683453 countsByYear W29156834532021 @default.
- W2915683453 countsByYear W29156834532022 @default.
- W2915683453 countsByYear W29156834532023 @default.
- W2915683453 crossrefType "journal-article" @default.
- W2915683453 hasAuthorship W2915683453A5001599295 @default.
- W2915683453 hasAuthorship W2915683453A5015477789 @default.
- W2915683453 hasAuthorship W2915683453A5015639955 @default.
- W2915683453 hasAuthorship W2915683453A5022800038 @default.
- W2915683453 hasAuthorship W2915683453A5035554947 @default.
- W2915683453 hasAuthorship W2915683453A5045125183 @default.
- W2915683453 hasConcept C108583219 @default.
- W2915683453 hasConcept C119857082 @default.
- W2915683453 hasConcept C124066611 @default.
- W2915683453 hasConcept C138885662 @default.
- W2915683453 hasConcept C147168706 @default.
- W2915683453 hasConcept C153180895 @default.
- W2915683453 hasConcept C154945302 @default.
- W2915683453 hasConcept C2524010 @default.
- W2915683453 hasConcept C2776401178 @default.
- W2915683453 hasConcept C2777210771 @default.
- W2915683453 hasConcept C33923547 @default.
- W2915683453 hasConcept C41008148 @default.
- W2915683453 hasConcept C41895202 @default.
- W2915683453 hasConcept C50644808 @default.
- W2915683453 hasConcept C59404180 @default.
- W2915683453 hasConcept C739882 @default.
- W2915683453 hasConcept C77637269 @default.
- W2915683453 hasConceptScore W2915683453C108583219 @default.
- W2915683453 hasConceptScore W2915683453C119857082 @default.
- W2915683453 hasConceptScore W2915683453C124066611 @default.