Matches in SemOpenAlex for { <https://semopenalex.org/work/W2915697550> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2915697550 abstract "We often want to learn about physical processes that are described by complex nonlinear mathematical models implemented as computer simulators. To use a simulator to make predictions about the real physical process, it is necessary to first perform calibration; that is, to use data obtained from a physical experiment to make inference about unknown parameters whilst acknowledging discrepancies between the simulator and reality. The computational expense of many simulators makes calibration challenging. Thus, usually in calibration, we use a computationally cheaper approximation to the simulator, often referred to as an emulator, constructed by fitting a statistical model to the results of a relatively small computer experiment. Although there is a substantial literature on the choice of the design of the computer experiment, the problem of designing the physical experiment in calibration is much less well-studied. This thesis is concerned with methodology for Bayesian optimal designs for the physical experiment when the aim is estimation of the unknown parameters in the simulator. Optimal Bayesian design for most realistic statistical models, including those incorporating expensive computer simulators, is complicated by the need to numerically approximate an analytically intractable expected utility; for example, the expected gain in Shannon information from the prior to posterior distribution. The standard approximation method is double-loop Monte Carlo integration using nested sampling from the prior distribution. Although this method is easy to implement, it produces biased approximations and is computationally expensive. For the Shannon information gain utility, we propose new approximation methods which combine features of importance sampling and Laplace approximations. These approximations are then used within an optimisation algorithm to find optimal designs for three problems: (i) estimation of the parameters in a nonlinear regression model; (ii) parameter estimation for a misspecified regression model subject to discrepancy; and (iii) estimation of the calibration parameters for a computational expensive simulator. Through examples, we demonstrate the advantages of this combination of methodology over existing methods." @default.
- W2915697550 created "2019-03-02" @default.
- W2915697550 creator A5049439780 @default.
- W2915697550 date "2018-07-01" @default.
- W2915697550 modified "2023-09-23" @default.
- W2915697550 title "Bayesian design for calibration of physical models" @default.
- W2915697550 hasPublicationYear "2018" @default.
- W2915697550 type Work @default.
- W2915697550 sameAs 2915697550 @default.
- W2915697550 citedByCount "1" @default.
- W2915697550 countsByYear W29156975502019 @default.
- W2915697550 crossrefType "dissertation" @default.
- W2915697550 hasAuthorship W2915697550A5049439780 @default.
- W2915697550 hasConcept C101112237 @default.
- W2915697550 hasConcept C105795698 @default.
- W2915697550 hasConcept C106131492 @default.
- W2915697550 hasConcept C107673813 @default.
- W2915697550 hasConcept C11413529 @default.
- W2915697550 hasConcept C116672817 @default.
- W2915697550 hasConcept C121332964 @default.
- W2915697550 hasConcept C126255220 @default.
- W2915697550 hasConcept C134261354 @default.
- W2915697550 hasConcept C140779682 @default.
- W2915697550 hasConcept C154945302 @default.
- W2915697550 hasConcept C160234255 @default.
- W2915697550 hasConcept C165838908 @default.
- W2915697550 hasConcept C19499675 @default.
- W2915697550 hasConcept C2776214188 @default.
- W2915697550 hasConcept C31972630 @default.
- W2915697550 hasConcept C33923547 @default.
- W2915697550 hasConcept C41008148 @default.
- W2915697550 hasConcept C44154836 @default.
- W2915697550 hasConcept C62520636 @default.
- W2915697550 hasConcept C87466663 @default.
- W2915697550 hasConcept C99173435 @default.
- W2915697550 hasConceptScore W2915697550C101112237 @default.
- W2915697550 hasConceptScore W2915697550C105795698 @default.
- W2915697550 hasConceptScore W2915697550C106131492 @default.
- W2915697550 hasConceptScore W2915697550C107673813 @default.
- W2915697550 hasConceptScore W2915697550C11413529 @default.
- W2915697550 hasConceptScore W2915697550C116672817 @default.
- W2915697550 hasConceptScore W2915697550C121332964 @default.
- W2915697550 hasConceptScore W2915697550C126255220 @default.
- W2915697550 hasConceptScore W2915697550C134261354 @default.
- W2915697550 hasConceptScore W2915697550C140779682 @default.
- W2915697550 hasConceptScore W2915697550C154945302 @default.
- W2915697550 hasConceptScore W2915697550C160234255 @default.
- W2915697550 hasConceptScore W2915697550C165838908 @default.
- W2915697550 hasConceptScore W2915697550C19499675 @default.
- W2915697550 hasConceptScore W2915697550C2776214188 @default.
- W2915697550 hasConceptScore W2915697550C31972630 @default.
- W2915697550 hasConceptScore W2915697550C33923547 @default.
- W2915697550 hasConceptScore W2915697550C41008148 @default.
- W2915697550 hasConceptScore W2915697550C44154836 @default.
- W2915697550 hasConceptScore W2915697550C62520636 @default.
- W2915697550 hasConceptScore W2915697550C87466663 @default.
- W2915697550 hasConceptScore W2915697550C99173435 @default.
- W2915697550 hasLocation W29156975501 @default.
- W2915697550 hasOpenAccess W2915697550 @default.
- W2915697550 hasPrimaryLocation W29156975501 @default.
- W2915697550 hasRelatedWork W1597933726 @default.
- W2915697550 hasRelatedWork W1974369534 @default.
- W2915697550 hasRelatedWork W2000657452 @default.
- W2915697550 hasRelatedWork W2018044188 @default.
- W2915697550 hasRelatedWork W2050814882 @default.
- W2915697550 hasRelatedWork W2161357544 @default.
- W2915697550 hasRelatedWork W2220523545 @default.
- W2915697550 hasRelatedWork W2466645323 @default.
- W2915697550 hasRelatedWork W2762679522 @default.
- W2915697550 hasRelatedWork W2767115451 @default.
- W2915697550 hasRelatedWork W2862751544 @default.
- W2915697550 hasRelatedWork W2890718832 @default.
- W2915697550 hasRelatedWork W2912956372 @default.
- W2915697550 hasRelatedWork W3005227448 @default.
- W2915697550 hasRelatedWork W3010690761 @default.
- W2915697550 hasRelatedWork W3031401429 @default.
- W2915697550 hasRelatedWork W3101048699 @default.
- W2915697550 hasRelatedWork W3110864321 @default.
- W2915697550 hasRelatedWork W3146762217 @default.
- W2915697550 hasRelatedWork W619010607 @default.
- W2915697550 isParatext "false" @default.
- W2915697550 isRetracted "false" @default.
- W2915697550 magId "2915697550" @default.
- W2915697550 workType "dissertation" @default.