Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916001629> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2916001629 endingPage "S228" @default.
- W2916001629 startingPage "S228" @default.
- W2916001629 abstract "To generate a prognostic model capable of predicting survival outcomes of hepatocellular carcinoma (HCC) patients after radioembolization (Y90) using machine learning methods. With IRB approval, we included baseline characteristics and overall survival (OS) data of 519 HCC patients who had Y90 between 2004 and 2017. Inclusion criteria included patients who: a) had Y90 for HCC; b) no subsequent surgical intervention (liver transplantation or resection) and c) reached death endpoint. Each patient was given a label of “1” (> median OS) or “0” (≤ median OS). Baseline data was transformed using a factor analysis (FA) model with 13 latent components. Cases were then randomly split into training and testing subsets (95 and 5% of cohort, respectively). A random forest classifier model was then trained using the training cases. Model classification performance was evaluated on the test set by measuring the area under the curve (AUC) of the receiver operator characteristics (ROC). The optimum model threshold was determined based on the ROC curve point which optimized sensitivity and specificity. The median OS was 8.3 months. A random forest classifier model was generated. The model performance on the test set (5% of the total dataset, 26 patients) had an AUC of 0.92 for distinguishing between patients with OS greater or less than the median (8.3 months). The positive predictive value of the model for predicting survival >8.3 months was 0.81 and the negative predictive value was 0.91. The optimum model threshold was determined to be 0.49 (range: 0.0-1.0). At the optimum model threshold, the sensitivity was 0.85 and the specificity was 0.92. Machine learning models (both unsupervised and supervised techniques) can be used to develop accurate predictive models to estimate post-treatment HCC survival. When compared to BCLC (AUC for prognosticating survival >1 year has been reported at 0.71-0.75), the AUC of our method for prognosticating survival >8.3 months was 0.92. While the model in its current state is rudimentary, a model with superior ROCs for prognosticating HCC survival could be developed with more detailed imaging/clinical data." @default.
- W2916001629 created "2019-03-02" @default.
- W2916001629 creator A5011003738 @default.
- W2916001629 creator A5033464248 @default.
- W2916001629 creator A5044862107 @default.
- W2916001629 creator A5075153200 @default.
- W2916001629 creator A5087536545 @default.
- W2916001629 creator A5087543918 @default.
- W2916001629 date "2019-03-01" @default.
- W2916001629 modified "2023-09-25" @default.
- W2916001629 title "Abstract No. 527 A random forest model for predicting survival of HCC patients treated with radioembolization" @default.
- W2916001629 doi "https://doi.org/10.1016/j.jvir.2018.12.608" @default.
- W2916001629 hasPublicationYear "2019" @default.
- W2916001629 type Work @default.
- W2916001629 sameAs 2916001629 @default.
- W2916001629 citedByCount "0" @default.
- W2916001629 crossrefType "journal-article" @default.
- W2916001629 hasAuthorship W2916001629A5011003738 @default.
- W2916001629 hasAuthorship W2916001629A5033464248 @default.
- W2916001629 hasAuthorship W2916001629A5044862107 @default.
- W2916001629 hasAuthorship W2916001629A5075153200 @default.
- W2916001629 hasAuthorship W2916001629A5087536545 @default.
- W2916001629 hasAuthorship W2916001629A5087543918 @default.
- W2916001629 hasBestOaLocation W29160016291 @default.
- W2916001629 hasConcept C10515644 @default.
- W2916001629 hasConcept C112705442 @default.
- W2916001629 hasConcept C126322002 @default.
- W2916001629 hasConcept C154945302 @default.
- W2916001629 hasConcept C169258074 @default.
- W2916001629 hasConcept C2778019345 @default.
- W2916001629 hasConcept C2779609443 @default.
- W2916001629 hasConcept C2911091166 @default.
- W2916001629 hasConcept C3020225094 @default.
- W2916001629 hasConcept C41008148 @default.
- W2916001629 hasConcept C50382708 @default.
- W2916001629 hasConcept C58471807 @default.
- W2916001629 hasConcept C71924100 @default.
- W2916001629 hasConcept C72563966 @default.
- W2916001629 hasConceptScore W2916001629C10515644 @default.
- W2916001629 hasConceptScore W2916001629C112705442 @default.
- W2916001629 hasConceptScore W2916001629C126322002 @default.
- W2916001629 hasConceptScore W2916001629C154945302 @default.
- W2916001629 hasConceptScore W2916001629C169258074 @default.
- W2916001629 hasConceptScore W2916001629C2778019345 @default.
- W2916001629 hasConceptScore W2916001629C2779609443 @default.
- W2916001629 hasConceptScore W2916001629C2911091166 @default.
- W2916001629 hasConceptScore W2916001629C3020225094 @default.
- W2916001629 hasConceptScore W2916001629C41008148 @default.
- W2916001629 hasConceptScore W2916001629C50382708 @default.
- W2916001629 hasConceptScore W2916001629C58471807 @default.
- W2916001629 hasConceptScore W2916001629C71924100 @default.
- W2916001629 hasConceptScore W2916001629C72563966 @default.
- W2916001629 hasIssue "3" @default.
- W2916001629 hasLocation W29160016291 @default.
- W2916001629 hasOpenAccess W2916001629 @default.
- W2916001629 hasPrimaryLocation W29160016291 @default.
- W2916001629 hasRelatedWork W1972223903 @default.
- W2916001629 hasRelatedWork W2026428324 @default.
- W2916001629 hasRelatedWork W2374492308 @default.
- W2916001629 hasRelatedWork W2516740959 @default.
- W2916001629 hasRelatedWork W2518610965 @default.
- W2916001629 hasRelatedWork W3127063759 @default.
- W2916001629 hasRelatedWork W3176018952 @default.
- W2916001629 hasRelatedWork W3181561567 @default.
- W2916001629 hasRelatedWork W4226165011 @default.
- W2916001629 hasRelatedWork W4313166210 @default.
- W2916001629 hasVolume "30" @default.
- W2916001629 isParatext "false" @default.
- W2916001629 isRetracted "false" @default.
- W2916001629 magId "2916001629" @default.
- W2916001629 workType "article" @default.