Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916009910> ?p ?o ?g. }
- W2916009910 endingPage "6167" @default.
- W2916009910 startingPage "6154" @default.
- W2916009910 abstract "Abstract Triple‐negative breast cancer (TNBC) has attracted more attention compared with other breast cancer subtypes due to its aggressive nature, poor prognosis, and chemotherapy remains the mainstay of treatment with no other approved targeted therapy. Therefore, the study aimed to discover more promising therapeutic targets and investigating new insights of biological mechanism of TNBC. Six microarray data sets consisting of 463 non‐TNBC and 405 TNBC samples were mined from Gene Expression Omnibus. The data sets were integrated by meta‐analysis and identified 1075 differentially expressed genes. Protein‐protein interaction network was constructed which consists of 486 nodes and 1932 edges, where 29 hub genes were obtained with high topological measures. Further, 16 features (hub genes), 12 upregulated ( AURKB , CCNB2 , CDC20 , DDX18 , EGFR , ENO1 , MYC , NUP88 , PLK1 , PML , POLR2F , and SKP2 ) and four downregulated ( CCND1 , GLI3 , SKP1 , and TGFB3 ) were selected through machine learning correlation based feature selection method on training data set. A naïve Bayes based classifier built using the expression profiles of 16 features (hub genes) accurately and reliably classify TNBC from non‐TNBC samples in the validation test data set with a receiver operating curve of 0.93 to 0.98. Subsequently, Gene Ontology analysis revealed that the hub genes were enriched in mitotic cell cycle processes and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that they were enriched in cell cycle pathways. Thus, the identified key hub genes and pathways highlighted in the study would enhance the understanding of molecular mechanism of TNBC which may serve as potential therapeutic target." @default.
- W2916009910 created "2019-03-02" @default.
- W2916009910 creator A5022895624 @default.
- W2916009910 creator A5068513032 @default.
- W2916009910 date "2018-10-09" @default.
- W2916009910 modified "2023-10-02" @default.
- W2916009910 title "Integrated network analysis and machine learning approach for the identification of key genes of triple‐negative breast cancer" @default.
- W2916009910 cites W1857266517 @default.
- W2916009910 cites W1974944535 @default.
- W2916009910 cites W1976892551 @default.
- W2916009910 cites W1981849943 @default.
- W2916009910 cites W1992840397 @default.
- W2916009910 cites W1995608074 @default.
- W2916009910 cites W2000895026 @default.
- W2916009910 cites W2006096599 @default.
- W2916009910 cites W2019267973 @default.
- W2916009910 cites W2025475845 @default.
- W2916009910 cites W2025623552 @default.
- W2916009910 cites W2047932287 @default.
- W2916009910 cites W2082793779 @default.
- W2916009910 cites W2101176202 @default.
- W2916009910 cites W2102942479 @default.
- W2916009910 cites W2103912979 @default.
- W2916009910 cites W2104024752 @default.
- W2916009910 cites W2114302755 @default.
- W2916009910 cites W2116634113 @default.
- W2916009910 cites W2118528246 @default.
- W2916009910 cites W2119825923 @default.
- W2916009910 cites W2126008912 @default.
- W2916009910 cites W2128361433 @default.
- W2916009910 cites W2130649080 @default.
- W2916009910 cites W2131994307 @default.
- W2916009910 cites W2133990480 @default.
- W2916009910 cites W2154981570 @default.
- W2916009910 cites W2159096710 @default.
- W2916009910 cites W2159675211 @default.
- W2916009910 cites W2172610136 @default.
- W2916009910 cites W2227122418 @default.
- W2916009910 cites W2260700459 @default.
- W2916009910 cites W2287812034 @default.
- W2916009910 cites W2295060570 @default.
- W2916009910 cites W2311446198 @default.
- W2916009910 cites W2321109325 @default.
- W2916009910 cites W2332193253 @default.
- W2916009910 cites W2345152897 @default.
- W2916009910 cites W2395887422 @default.
- W2916009910 cites W2402636472 @default.
- W2916009910 cites W2509794319 @default.
- W2916009910 cites W2565217587 @default.
- W2916009910 cites W2570618306 @default.
- W2916009910 cites W2588604855 @default.
- W2916009910 cites W2751156550 @default.
- W2916009910 cites W2756868900 @default.
- W2916009910 doi "https://doi.org/10.1002/jcb.27903" @default.
- W2916009910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30302816" @default.
- W2916009910 hasPublicationYear "2018" @default.
- W2916009910 type Work @default.
- W2916009910 sameAs 2916009910 @default.
- W2916009910 citedByCount "23" @default.
- W2916009910 countsByYear W29160099102019 @default.
- W2916009910 countsByYear W29160099102020 @default.
- W2916009910 countsByYear W29160099102021 @default.
- W2916009910 countsByYear W29160099102023 @default.
- W2916009910 crossrefType "journal-article" @default.
- W2916009910 hasAuthorship W2916009910A5022895624 @default.
- W2916009910 hasAuthorship W2916009910A5068513032 @default.
- W2916009910 hasConcept C104317684 @default.
- W2916009910 hasConcept C119857082 @default.
- W2916009910 hasConcept C121608353 @default.
- W2916009910 hasConcept C12267149 @default.
- W2916009910 hasConcept C150194340 @default.
- W2916009910 hasConcept C152724338 @default.
- W2916009910 hasConcept C162317418 @default.
- W2916009910 hasConcept C2780110267 @default.
- W2916009910 hasConcept C41008148 @default.
- W2916009910 hasConcept C502942594 @default.
- W2916009910 hasConcept C52001869 @default.
- W2916009910 hasConcept C530470458 @default.
- W2916009910 hasConcept C54355233 @default.
- W2916009910 hasConcept C70721500 @default.
- W2916009910 hasConcept C8415881 @default.
- W2916009910 hasConcept C86803240 @default.
- W2916009910 hasConceptScore W2916009910C104317684 @default.
- W2916009910 hasConceptScore W2916009910C119857082 @default.
- W2916009910 hasConceptScore W2916009910C121608353 @default.
- W2916009910 hasConceptScore W2916009910C12267149 @default.
- W2916009910 hasConceptScore W2916009910C150194340 @default.
- W2916009910 hasConceptScore W2916009910C152724338 @default.
- W2916009910 hasConceptScore W2916009910C162317418 @default.
- W2916009910 hasConceptScore W2916009910C2780110267 @default.
- W2916009910 hasConceptScore W2916009910C41008148 @default.
- W2916009910 hasConceptScore W2916009910C502942594 @default.
- W2916009910 hasConceptScore W2916009910C52001869 @default.
- W2916009910 hasConceptScore W2916009910C530470458 @default.
- W2916009910 hasConceptScore W2916009910C54355233 @default.
- W2916009910 hasConceptScore W2916009910C70721500 @default.
- W2916009910 hasConceptScore W2916009910C8415881 @default.
- W2916009910 hasConceptScore W2916009910C86803240 @default.