Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916323829> ?p ?o ?g. }
- W2916323829 endingPage "1676" @default.
- W2916323829 startingPage "1666" @default.
- W2916323829 abstract "Current clinical practice relies on clinical history to determine the time since stroke (TSS) onset. Imaging-based determination of acute stroke onset time could provide critical information to clinicians in deciding stroke treatment options, such as thrombolysis. The patients with unknown or unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the therapeutic window. In this paper, we demonstrate a machine learning approach for TSS classification using routinely acquired imaging sequences. We develop imaging features from the magnetic resonance (MR) images and train machine learning models to classify the TSS. We also propose a deep-learning model to extract hidden representations for the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional deep features. The cross-validation results show that our best classifier achieved an area under the curve of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming existing methods. We show that the features generated by our deep-learning algorithm correlate with the MR imaging features, and validate the robustness of the model on imaging parameter variations (e.g., year of imaging). This paper advances magnetic resonance imaging analysis one-step-closer to an operational decision support tool for stroke treatment guidance." @default.
- W2916323829 created "2019-03-02" @default.
- W2916323829 creator A5001518045 @default.
- W2916323829 creator A5001751044 @default.
- W2916323829 creator A5006645827 @default.
- W2916323829 creator A5029456122 @default.
- W2916323829 creator A5042438173 @default.
- W2916323829 creator A5058945277 @default.
- W2916323829 date "2019-07-01" @default.
- W2916323829 modified "2023-10-16" @default.
- W2916323829 title "A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging" @default.
- W2916323829 cites W1678356000 @default.
- W2916323829 cites W1789016606 @default.
- W2916323829 cites W1875457868 @default.
- W2916323829 cites W1884695109 @default.
- W2916323829 cites W1909935856 @default.
- W2916323829 cites W1990837723 @default.
- W2916323829 cites W1990870045 @default.
- W2916323829 cites W1992122542 @default.
- W2916323829 cites W1995520078 @default.
- W2916323829 cites W2006096283 @default.
- W2916323829 cites W2021155520 @default.
- W2916323829 cites W2028214117 @default.
- W2916323829 cites W2036109700 @default.
- W2916323829 cites W2040107974 @default.
- W2916323829 cites W2040454936 @default.
- W2916323829 cites W2041148826 @default.
- W2916323829 cites W2042925500 @default.
- W2916323829 cites W2044823971 @default.
- W2916323829 cites W2067747284 @default.
- W2916323829 cites W2081704737 @default.
- W2916323829 cites W2102150307 @default.
- W2916323829 cites W2102447759 @default.
- W2916323829 cites W2104657667 @default.
- W2916323829 cites W2106324086 @default.
- W2916323829 cites W2108812972 @default.
- W2916323829 cites W2113514989 @default.
- W2916323829 cites W2125404756 @default.
- W2916323829 cites W2134605661 @default.
- W2916323829 cites W2143945909 @default.
- W2916323829 cites W2146587907 @default.
- W2916323829 cites W2150276788 @default.
- W2916323829 cites W2154290668 @default.
- W2916323829 cites W2156896333 @default.
- W2916323829 cites W2163932511 @default.
- W2916323829 cites W2165882703 @default.
- W2916323829 cites W2202924699 @default.
- W2916323829 cites W2282821441 @default.
- W2916323829 cites W2320009943 @default.
- W2916323829 cites W2326168248 @default.
- W2916323829 cites W234640303 @default.
- W2916323829 cites W2555151154 @default.
- W2916323829 cites W2609927940 @default.
- W2916323829 cites W2785545596 @default.
- W2916323829 cites W2786974903 @default.
- W2916323829 cites W2791453970 @default.
- W2916323829 cites W2800924554 @default.
- W2916323829 cites W2911964244 @default.
- W2916323829 cites W2919115771 @default.
- W2916323829 cites W4239510810 @default.
- W2916323829 doi "https://doi.org/10.1109/tmi.2019.2901445" @default.
- W2916323829 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6661120" @default.
- W2916323829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30802855" @default.
- W2916323829 hasPublicationYear "2019" @default.
- W2916323829 type Work @default.
- W2916323829 sameAs 2916323829 @default.
- W2916323829 citedByCount "61" @default.
- W2916323829 countsByYear W29163238292019 @default.
- W2916323829 countsByYear W29163238292020 @default.
- W2916323829 countsByYear W29163238292021 @default.
- W2916323829 countsByYear W29163238292022 @default.
- W2916323829 countsByYear W29163238292023 @default.
- W2916323829 crossrefType "journal-article" @default.
- W2916323829 hasAuthorship W2916323829A5001518045 @default.
- W2916323829 hasAuthorship W2916323829A5001751044 @default.
- W2916323829 hasAuthorship W2916323829A5006645827 @default.
- W2916323829 hasAuthorship W2916323829A5029456122 @default.
- W2916323829 hasAuthorship W2916323829A5042438173 @default.
- W2916323829 hasAuthorship W2916323829A5058945277 @default.
- W2916323829 hasBestOaLocation W29163238292 @default.
- W2916323829 hasConcept C104317684 @default.
- W2916323829 hasConcept C108583219 @default.
- W2916323829 hasConcept C119857082 @default.
- W2916323829 hasConcept C126322002 @default.
- W2916323829 hasConcept C126838900 @default.
- W2916323829 hasConcept C127413603 @default.
- W2916323829 hasConcept C135691158 @default.
- W2916323829 hasConcept C143409427 @default.
- W2916323829 hasConcept C146957229 @default.
- W2916323829 hasConcept C153180895 @default.
- W2916323829 hasConcept C154945302 @default.
- W2916323829 hasConcept C185592680 @default.
- W2916323829 hasConcept C2779581417 @default.
- W2916323829 hasConcept C2780645631 @default.
- W2916323829 hasConcept C31601959 @default.
- W2916323829 hasConcept C41008148 @default.
- W2916323829 hasConcept C500558357 @default.
- W2916323829 hasConcept C55493867 @default.