Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916364889> ?p ?o ?g. }
- W2916364889 endingPage "491" @default.
- W2916364889 startingPage "491" @default.
- W2916364889 abstract "For research involving big data, researchers must accurately identify patients with ocular diseases or phenotypes of interest. Reliance on administrative billing codes alone for this purpose is limiting.To develop a method to accurately identify the presence or absence of ocular conditions of interest using electronic health record (EHR) data.This study is a retrospective analysis of the EHR data of patients (n = 122 339) in the Sight Outcomes Research Collaborative Ophthalmology Data Repository who received eye care at participating academic medical centers between August 1, 2012, and August 31, 2017. An algorithm that searches structured and unstructured (free-text) EHR data for conditions of interest was developed and then tested to determine how well it could detect the presence or absence of exfoliation syndrome (XFS). The algorithm was trained to search for evidence of XFS among a sample of patients with and without XFS (n = 200) by reviewing International Classification of Diseases, Ninth Revision or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-9 or ICD-10) billing codes, the patient's problem list, and text within the ocular examination section and unstructured (free-text) data in the EHR. The likelihood that each patient had XFS was estimated using logistic least absolute shrinkage and selection operator (LASSO) regression. The EHR data of all patients were run through the algorithm to generate an XFS probability score for each patient. The algorithm was validated with review of EHRs by glaucoma specialists.Positive predictive value (PPV) and negative predictive value (NPV) of the algorithm were computed as the proportion of patients correctly classified with XFS or without XFS.This study included 122 339 patients, with a mean (SD) age of 52.4 (25.1) years. Of these patients, 69 002 (56.4%) were female and 99 579 (81.4%) were white. The algorithm assigned a less than 10% probability of XFS for 121 085 patients (99.0%) as well as an XFS probability score of more than 75% for 543 patients (0.4%), more than 90% for 353 patients (0.3%), and more than 99% for 83 patients (0.07%). Validated by glaucoma specialists, the algorithm had a PPV of 95.0% (95% CI, 89.5%-97.7%) and an NPV of 100% (95% CI, 91.2%-100%). When there was ICD-9 or ICD-10 billing code documentation of XFS, in 86% or 96% of the records, respectively, evidence of XFS was also recorded elsewhere in the EHR. Conversely, when there was clinical examination or free-text evidence of XFS, it was documented with ICD-9 codes only approximately 40% of the time and even less often with ICD-10 codes.The algorithm developed, tested, and validated in this study appears to be better at identifying the presence or absence of XFS in EHR data than the conventional approach of assessing only billing codes; such an algorithm may enhance the ability of investigators to use EHR data to study patients with ocular diseases." @default.
- W2916364889 created "2019-03-02" @default.
- W2916364889 creator A5004827641 @default.
- W2916364889 creator A5008939020 @default.
- W2916364889 creator A5015841204 @default.
- W2916364889 creator A5028335854 @default.
- W2916364889 creator A5032246831 @default.
- W2916364889 creator A5036604351 @default.
- W2916364889 creator A5041532736 @default.
- W2916364889 creator A5071917825 @default.
- W2916364889 creator A5072213823 @default.
- W2916364889 creator A5074939134 @default.
- W2916364889 creator A5075701642 @default.
- W2916364889 creator A5085528800 @default.
- W2916364889 date "2019-05-01" @default.
- W2916364889 modified "2023-10-12" @default.
- W2916364889 title "Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health Record Data" @default.
- W2916364889 cites W142780593 @default.
- W2916364889 cites W15289527 @default.
- W2916364889 cites W1588519937 @default.
- W2916364889 cites W1993817442 @default.
- W2916364889 cites W2007567218 @default.
- W2916364889 cites W2014577480 @default.
- W2916364889 cites W2019273753 @default.
- W2916364889 cites W2022286659 @default.
- W2916364889 cites W2053906978 @default.
- W2916364889 cites W2072207784 @default.
- W2916364889 cites W2127220257 @default.
- W2916364889 cites W2138162199 @default.
- W2916364889 cites W2479795546 @default.
- W2916364889 cites W2558929192 @default.
- W2916364889 cites W2606819954 @default.
- W2916364889 cites W2620971562 @default.
- W2916364889 cites W2621341424 @default.
- W2916364889 cites W2743298989 @default.
- W2916364889 cites W2776812929 @default.
- W2916364889 cites W2783439068 @default.
- W2916364889 cites W2801928505 @default.
- W2916364889 cites W4231716331 @default.
- W2916364889 cites W4237982921 @default.
- W2916364889 doi "https://doi.org/10.1001/jamaophthalmol.2018.7051" @default.
- W2916364889 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6512255" @default.
- W2916364889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30789656" @default.
- W2916364889 hasPublicationYear "2019" @default.
- W2916364889 type Work @default.
- W2916364889 sameAs 2916364889 @default.
- W2916364889 citedByCount "32" @default.
- W2916364889 countsByYear W29163648892019 @default.
- W2916364889 countsByYear W29163648892020 @default.
- W2916364889 countsByYear W29163648892021 @default.
- W2916364889 countsByYear W29163648892022 @default.
- W2916364889 countsByYear W29163648892023 @default.
- W2916364889 crossrefType "journal-article" @default.
- W2916364889 hasAuthorship W2916364889A5004827641 @default.
- W2916364889 hasAuthorship W2916364889A5008939020 @default.
- W2916364889 hasAuthorship W2916364889A5015841204 @default.
- W2916364889 hasAuthorship W2916364889A5028335854 @default.
- W2916364889 hasAuthorship W2916364889A5032246831 @default.
- W2916364889 hasAuthorship W2916364889A5036604351 @default.
- W2916364889 hasAuthorship W2916364889A5041532736 @default.
- W2916364889 hasAuthorship W2916364889A5071917825 @default.
- W2916364889 hasAuthorship W2916364889A5072213823 @default.
- W2916364889 hasAuthorship W2916364889A5074939134 @default.
- W2916364889 hasAuthorship W2916364889A5075701642 @default.
- W2916364889 hasAuthorship W2916364889A5085528800 @default.
- W2916364889 hasBestOaLocation W29163648891 @default.
- W2916364889 hasConcept C11413529 @default.
- W2916364889 hasConcept C118487528 @default.
- W2916364889 hasConcept C119767625 @default.
- W2916364889 hasConcept C124101348 @default.
- W2916364889 hasConcept C126322002 @default.
- W2916364889 hasConcept C136764020 @default.
- W2916364889 hasConcept C151956035 @default.
- W2916364889 hasConcept C154945302 @default.
- W2916364889 hasConcept C160735492 @default.
- W2916364889 hasConcept C162324750 @default.
- W2916364889 hasConcept C2778527774 @default.
- W2916364889 hasConcept C2908647359 @default.
- W2916364889 hasConcept C3020144179 @default.
- W2916364889 hasConcept C37616216 @default.
- W2916364889 hasConcept C41008148 @default.
- W2916364889 hasConcept C45827449 @default.
- W2916364889 hasConcept C50522688 @default.
- W2916364889 hasConcept C71924100 @default.
- W2916364889 hasConcept C99454951 @default.
- W2916364889 hasConceptScore W2916364889C11413529 @default.
- W2916364889 hasConceptScore W2916364889C118487528 @default.
- W2916364889 hasConceptScore W2916364889C119767625 @default.
- W2916364889 hasConceptScore W2916364889C124101348 @default.
- W2916364889 hasConceptScore W2916364889C126322002 @default.
- W2916364889 hasConceptScore W2916364889C136764020 @default.
- W2916364889 hasConceptScore W2916364889C151956035 @default.
- W2916364889 hasConceptScore W2916364889C154945302 @default.
- W2916364889 hasConceptScore W2916364889C160735492 @default.
- W2916364889 hasConceptScore W2916364889C162324750 @default.
- W2916364889 hasConceptScore W2916364889C2778527774 @default.
- W2916364889 hasConceptScore W2916364889C2908647359 @default.
- W2916364889 hasConceptScore W2916364889C3020144179 @default.