Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916454785> ?p ?o ?g. }
- W2916454785 endingPage "773" @default.
- W2916454785 startingPage "758" @default.
- W2916454785 abstract "Short-term wind speed prediction is an important task for the wind energy development. However, due to intermittency and uncertainty of wind resources, it is difficult to be achieved only by the deterministic prediction. Hence, there is a motivation to develop a novel method to further consider the uncertainty. The originality is to develop an innovative hybrid wind speed forecasting model based on empirical mode decomposition, variational mode decomposition, sample entropy and conditional kernel density estimation. More specifically, the original data are decomposed in real time by the refined variational mode decomposition, where the number of decomposition levels is adaptively determined by empirical mode decomposition and sample entropy. Then, conditional kernel density estimation with the bandwidth optimized by normal reference criterion is used to obtain the predictive probability density function for each subseries, by which the expectations and variances are derived. Finally, the deterministic prediction is produced by summarizing these expectations and the probabilistic prediction interval is obtained by the covariance and the Gaussian distribution assumption on target wind speed. It should be emphasized that some hypotheses are adopted in the proposed method: the correlations among different subseries can be characterized by the covariance and the target wind speed follows Gaussian distribution. Two case studies based on the measured data are used to evaluate the performance of the proposed method. The results show the improvement by the proposed method is up to 20% compared with empirical mode decomposition-based method. The main conclusion is that the proposed method may provide the better prediction over other models for the wind speed data with nonstationarity." @default.
- W2916454785 created "2019-03-02" @default.
- W2916454785 creator A5012412861 @default.
- W2916454785 creator A5017859691 @default.
- W2916454785 creator A5046950855 @default.
- W2916454785 creator A5059805739 @default.
- W2916454785 creator A5088773882 @default.
- W2916454785 date "2019-04-01" @default.
- W2916454785 modified "2023-10-13" @default.
- W2916454785 title "A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation" @default.
- W2916454785 cites W1030534343 @default.
- W2916454785 cites W1556483090 @default.
- W2916454785 cites W1862394037 @default.
- W2916454785 cites W1970071487 @default.
- W2916454785 cites W1970392686 @default.
- W2916454785 cites W1972985055 @default.
- W2916454785 cites W1991420715 @default.
- W2916454785 cites W2000982976 @default.
- W2916454785 cites W2001390453 @default.
- W2916454785 cites W2006161877 @default.
- W2916454785 cites W2007221293 @default.
- W2916454785 cites W2007357277 @default.
- W2916454785 cites W2011630059 @default.
- W2916454785 cites W2019900743 @default.
- W2916454785 cites W2022912953 @default.
- W2916454785 cites W2023140731 @default.
- W2916454785 cites W2024692966 @default.
- W2916454785 cites W2036681246 @default.
- W2916454785 cites W2039306928 @default.
- W2916454785 cites W2068928057 @default.
- W2916454785 cites W2078667481 @default.
- W2916454785 cites W2078923298 @default.
- W2916454785 cites W2140910096 @default.
- W2916454785 cites W2156250920 @default.
- W2916454785 cites W2156604062 @default.
- W2916454785 cites W2173299659 @default.
- W2916454785 cites W2275988060 @default.
- W2916454785 cites W2283544056 @default.
- W2916454785 cites W2287448331 @default.
- W2916454785 cites W2329476579 @default.
- W2916454785 cites W2404144478 @default.
- W2916454785 cites W2484979138 @default.
- W2916454785 cites W2513964223 @default.
- W2916454785 cites W2606283685 @default.
- W2916454785 cites W2611273431 @default.
- W2916454785 cites W2617244595 @default.
- W2916454785 cites W2618615629 @default.
- W2916454785 cites W2624832571 @default.
- W2916454785 cites W2731024278 @default.
- W2916454785 cites W2755841959 @default.
- W2916454785 cites W2762869206 @default.
- W2916454785 cites W2768102848 @default.
- W2916454785 cites W2773931999 @default.
- W2916454785 cites W2774285655 @default.
- W2916454785 cites W2781009421 @default.
- W2916454785 cites W2783204403 @default.
- W2916454785 cites W2792244305 @default.
- W2916454785 cites W2899996856 @default.
- W2916454785 cites W341735883 @default.
- W2916454785 doi "https://doi.org/10.1016/j.enconman.2019.02.028" @default.
- W2916454785 hasPublicationYear "2019" @default.
- W2916454785 type Work @default.
- W2916454785 sameAs 2916454785 @default.
- W2916454785 citedByCount "61" @default.
- W2916454785 countsByYear W29164547852019 @default.
- W2916454785 countsByYear W29164547852020 @default.
- W2916454785 countsByYear W29164547852021 @default.
- W2916454785 countsByYear W29164547852022 @default.
- W2916454785 countsByYear W29164547852023 @default.
- W2916454785 crossrefType "journal-article" @default.
- W2916454785 hasAuthorship W2916454785A5012412861 @default.
- W2916454785 hasAuthorship W2916454785A5017859691 @default.
- W2916454785 hasAuthorship W2916454785A5046950855 @default.
- W2916454785 hasAuthorship W2916454785A5059805739 @default.
- W2916454785 hasAuthorship W2916454785A5088773882 @default.
- W2916454785 hasConcept C105795698 @default.
- W2916454785 hasConcept C106301342 @default.
- W2916454785 hasConcept C11413529 @default.
- W2916454785 hasConcept C121332964 @default.
- W2916454785 hasConcept C126255220 @default.
- W2916454785 hasConcept C149441793 @default.
- W2916454785 hasConcept C153294291 @default.
- W2916454785 hasConcept C161067210 @default.
- W2916454785 hasConcept C163716315 @default.
- W2916454785 hasConcept C178650346 @default.
- W2916454785 hasConcept C185429906 @default.
- W2916454785 hasConcept C197055811 @default.
- W2916454785 hasConcept C28826006 @default.
- W2916454785 hasConcept C33923547 @default.
- W2916454785 hasConcept C41008148 @default.
- W2916454785 hasConcept C43555835 @default.
- W2916454785 hasConcept C49937458 @default.
- W2916454785 hasConcept C62520636 @default.
- W2916454785 hasConcept C71134354 @default.
- W2916454785 hasConceptScore W2916454785C105795698 @default.
- W2916454785 hasConceptScore W2916454785C106301342 @default.
- W2916454785 hasConceptScore W2916454785C11413529 @default.
- W2916454785 hasConceptScore W2916454785C121332964 @default.