Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916484727> ?p ?o ?g. }
- W2916484727 startingPage "555862" @default.
- W2916484727 abstract "Abstract Decision making is often modelled as a competition between options. Currently, a great number of popular models to explain the accuracy and speed in decision making are based on variations of drift diffusion models (DDM), in which the options compete by accumulating evidence toward decision bounds. Attractor-based recurrent neural networks have been proposed to explain the underlying neural mechanism. Yet, it is questionable that either the DDM or attractor network is the brain’s general solution for decision making. Here, we propose an alternative recurrent neural network modeling approach based on gated recurrent units and sequence learning. Our network model is trained to learn the statistical structure of temporal sequences of sensory events, action events, and reward events. We demonstrate its learning with a reaction-time version of the weather prediction task previously studied in monkey experiments, in which both the animals’ behavior and the neuronal responses were consistent with the DDM. The network model’s performance is able to reflect the accuracy and reaction time pattern of the animals’ choice behavior. The analyses of the unit responses in the network reveal that they match important experimental findings. Notably, we find units encoding the accumulated evidence and the urgency signal. We further identify two groups of units based on their connection weights to the choice output units. Simulated lesions of each group of units produce doubly-dissociable effects on the network’s choice and reaction time behavior. Graph analyses reveal that these two groups of units belong to one highly interconnected sub-network. Finally, we show that the network is capable of making predictions consistent with the predictive coding and Bayesian inference framework. Our work offers experimentally testable predictions of how decision making is achieved in the brain. It provides an approach that may piece together experimental findings of decision making, reinforcement learning, and predictive coding. In particular, it suggests that the DDM may be a manifestation of a more general computational mechanism in the brain." @default.
- W2916484727 created "2019-03-02" @default.
- W2916484727 creator A5000086091 @default.
- W2916484727 creator A5041057969 @default.
- W2916484727 creator A5067102328 @default.
- W2916484727 creator A5070982182 @default.
- W2916484727 date "2019-02-20" @default.
- W2916484727 modified "2023-09-26" @default.
- W2916484727 title "A Sequence Learning Model for Decision Making in the Brain" @default.
- W2916484727 cites W1589439850 @default.
- W2916484727 cites W1671906456 @default.
- W2916484727 cites W1840530701 @default.
- W2916484727 cites W1905790310 @default.
- W2916484727 cites W1924770834 @default.
- W2916484727 cites W1963789865 @default.
- W2916484727 cites W1977545325 @default.
- W2916484727 cites W1991530889 @default.
- W2916484727 cites W2003397476 @default.
- W2916484727 cites W2011265495 @default.
- W2916484727 cites W2012037220 @default.
- W2916484727 cites W2013150964 @default.
- W2916484727 cites W2018415829 @default.
- W2916484727 cites W2029655239 @default.
- W2916484727 cites W2039858203 @default.
- W2916484727 cites W2047125104 @default.
- W2916484727 cites W2059511681 @default.
- W2916484727 cites W2079686476 @default.
- W2916484727 cites W2094037121 @default.
- W2916484727 cites W2098205603 @default.
- W2916484727 cites W2111534506 @default.
- W2916484727 cites W2113263087 @default.
- W2916484727 cites W2113576610 @default.
- W2916484727 cites W2117726420 @default.
- W2916484727 cites W2127958135 @default.
- W2916484727 cites W2136582516 @default.
- W2916484727 cites W2144095870 @default.
- W2916484727 cites W2145998391 @default.
- W2916484727 cites W2149565728 @default.
- W2916484727 cites W2168815228 @default.
- W2916484727 cites W2170716773 @default.
- W2916484727 cites W2171292876 @default.
- W2916484727 cites W2746775567 @default.
- W2916484727 cites W2794407637 @default.
- W2916484727 cites W2803900643 @default.
- W2916484727 cites W2883774289 @default.
- W2916484727 cites W2898281687 @default.
- W2916484727 cites W2908124316 @default.
- W2916484727 cites W2950635152 @default.
- W2916484727 cites W2953109992 @default.
- W2916484727 hasPublicationYear "2019" @default.
- W2916484727 type Work @default.
- W2916484727 sameAs 2916484727 @default.
- W2916484727 citedByCount "0" @default.
- W2916484727 crossrefType "posted-content" @default.
- W2916484727 hasAuthorship W2916484727A5000086091 @default.
- W2916484727 hasAuthorship W2916484727A5041057969 @default.
- W2916484727 hasAuthorship W2916484727A5067102328 @default.
- W2916484727 hasAuthorship W2916484727A5070982182 @default.
- W2916484727 hasBestOaLocation W29164847271 @default.
- W2916484727 hasConcept C104122410 @default.
- W2916484727 hasConcept C119857082 @default.
- W2916484727 hasConcept C134306372 @default.
- W2916484727 hasConcept C147168706 @default.
- W2916484727 hasConcept C154945302 @default.
- W2916484727 hasConcept C164380108 @default.
- W2916484727 hasConcept C2778112365 @default.
- W2916484727 hasConcept C2993807640 @default.
- W2916484727 hasConcept C33923547 @default.
- W2916484727 hasConcept C41008148 @default.
- W2916484727 hasConcept C50644808 @default.
- W2916484727 hasConcept C54355233 @default.
- W2916484727 hasConcept C86803240 @default.
- W2916484727 hasConceptScore W2916484727C104122410 @default.
- W2916484727 hasConceptScore W2916484727C119857082 @default.
- W2916484727 hasConceptScore W2916484727C134306372 @default.
- W2916484727 hasConceptScore W2916484727C147168706 @default.
- W2916484727 hasConceptScore W2916484727C154945302 @default.
- W2916484727 hasConceptScore W2916484727C164380108 @default.
- W2916484727 hasConceptScore W2916484727C2778112365 @default.
- W2916484727 hasConceptScore W2916484727C2993807640 @default.
- W2916484727 hasConceptScore W2916484727C33923547 @default.
- W2916484727 hasConceptScore W2916484727C41008148 @default.
- W2916484727 hasConceptScore W2916484727C50644808 @default.
- W2916484727 hasConceptScore W2916484727C54355233 @default.
- W2916484727 hasConceptScore W2916484727C86803240 @default.
- W2916484727 hasLocation W29164847271 @default.
- W2916484727 hasOpenAccess W2916484727 @default.
- W2916484727 hasPrimaryLocation W29164847271 @default.
- W2916484727 hasRelatedWork W1980842424 @default.
- W2916484727 hasRelatedWork W2474360776 @default.
- W2916484727 hasRelatedWork W2497495400 @default.
- W2916484727 hasRelatedWork W2527459149 @default.
- W2916484727 hasRelatedWork W2566794649 @default.
- W2916484727 hasRelatedWork W2578266030 @default.
- W2916484727 hasRelatedWork W2589532588 @default.
- W2916484727 hasRelatedWork W2827257388 @default.
- W2916484727 hasRelatedWork W2900684780 @default.
- W2916484727 hasRelatedWork W2914660469 @default.
- W2916484727 hasRelatedWork W2933940724 @default.