Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916601070> ?p ?o ?g. }
- W2916601070 endingPage "8380" @default.
- W2916601070 startingPage "8361" @default.
- W2916601070 abstract "The use of machine learning (ML) models toward development of validated structure–property relationships for two fundamental properties of activated inorganic scintillators for high energy radiation detection, namely the light yield (LY) and the decay time constant, is explored. The ML models are built on easily accessible proxies of materials—interchangeably referred to as features, descriptors or fingerprints—that are carefully selected on the basis of a physical understanding of the scintillation mechanism. Our study indicates that the developed physics-based ML models employing kernel ridge regression (KRR) and AdaBoost algorithm applied on top of a decision tree-based regression are able to “learn” the underlying design rules in a multi-dimensional feature space and thereby enable reasonably accurate predictions of the two target properties on unseen compounds (i.e., on a held-out test set). For instance, within a set of twenty-five cerium- or europium-doped scintillator materials, our analysis reveals a strong correlation between the average ionic part of the dielectric constant and the LY, irrespective of the specific chemistry of the compounds, indicating that the average ionic part of the dielectric constant is a particularly relevant descriptor toward prediction of the LY. Our results also demonstrate that, despite the use of small training datasets, the developed models are able to quickly distinguish high performing chemistries from those with relatively poor performance and therefore can play a crucial role in screening of new compounds with an attractive combination of targeted properties. The present study provides necessary motivation for future efforts involving ML models with relatively large training datasets, vast feature space explorations, and experimental design in search of promising novel scintillator chemistries." @default.
- W2916601070 created "2019-03-02" @default.
- W2916601070 creator A5012391877 @default.
- W2916601070 creator A5022129795 @default.
- W2916601070 creator A5075051974 @default.
- W2916601070 date "2019-02-26" @default.
- W2916601070 modified "2023-09-23" @default.
- W2916601070 title "Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators" @default.
- W2916601070 cites W1550186202 @default.
- W2916601070 cites W1584846110 @default.
- W2916601070 cites W1965621008 @default.
- W2916601070 cites W1969302577 @default.
- W2916601070 cites W1970127494 @default.
- W2916601070 cites W1973497244 @default.
- W2916601070 cites W1979544533 @default.
- W2916601070 cites W1981338907 @default.
- W2916601070 cites W1981368803 @default.
- W2916601070 cites W1989581995 @default.
- W2916601070 cites W2007816969 @default.
- W2916601070 cites W2008121308 @default.
- W2916601070 cites W2010792907 @default.
- W2916601070 cites W2011167731 @default.
- W2916601070 cites W2012136689 @default.
- W2916601070 cites W2021266813 @default.
- W2916601070 cites W2025181168 @default.
- W2916601070 cites W2026279354 @default.
- W2916601070 cites W2036113194 @default.
- W2916601070 cites W2036310129 @default.
- W2916601070 cites W2040559147 @default.
- W2916601070 cites W2040655336 @default.
- W2916601070 cites W2045001472 @default.
- W2916601070 cites W2053723106 @default.
- W2916601070 cites W2057745293 @default.
- W2916601070 cites W2059596240 @default.
- W2916601070 cites W2070059498 @default.
- W2916601070 cites W2074345420 @default.
- W2916601070 cites W2074616700 @default.
- W2916601070 cites W2083222334 @default.
- W2916601070 cites W2086186532 @default.
- W2916601070 cites W2086269574 @default.
- W2916601070 cites W2087032599 @default.
- W2916601070 cites W2092669834 @default.
- W2916601070 cites W2095614202 @default.
- W2916601070 cites W2112031167 @default.
- W2916601070 cites W2119703258 @default.
- W2916601070 cites W2125572822 @default.
- W2916601070 cites W2132905138 @default.
- W2916601070 cites W2134568542 @default.
- W2916601070 cites W2150186686 @default.
- W2916601070 cites W2151171489 @default.
- W2916601070 cites W2164524421 @default.
- W2916601070 cites W2176170193 @default.
- W2916601070 cites W2261108203 @default.
- W2916601070 cites W2262215104 @default.
- W2916601070 cites W2281127889 @default.
- W2916601070 cites W2284814435 @default.
- W2916601070 cites W2318452386 @default.
- W2916601070 cites W2331520253 @default.
- W2916601070 cites W2334152356 @default.
- W2916601070 cites W2337110853 @default.
- W2916601070 cites W2338402873 @default.
- W2916601070 cites W2343462019 @default.
- W2916601070 cites W2344188443 @default.
- W2916601070 cites W2352719088 @default.
- W2916601070 cites W2415372084 @default.
- W2916601070 cites W2464725281 @default.
- W2916601070 cites W2471982001 @default.
- W2916601070 cites W2498941985 @default.
- W2916601070 cites W2508632634 @default.
- W2916601070 cites W2514544894 @default.
- W2916601070 cites W2564078846 @default.
- W2916601070 cites W2566642125 @default.
- W2916601070 cites W2585666583 @default.
- W2916601070 cites W2755837508 @default.
- W2916601070 cites W2760202681 @default.
- W2916601070 cites W2778051509 @default.
- W2916601070 cites W2783016230 @default.
- W2916601070 cites W2787894218 @default.
- W2916601070 cites W2797328093 @default.
- W2916601070 cites W2797864456 @default.
- W2916601070 cites W2799915630 @default.
- W2916601070 cites W2800143386 @default.
- W2916601070 cites W2883583109 @default.
- W2916601070 cites W2884430236 @default.
- W2916601070 cites W2884817966 @default.
- W2916601070 cites W2903483166 @default.
- W2916601070 cites W2963784900 @default.
- W2916601070 cites W2964332384 @default.
- W2916601070 cites W3101643101 @default.
- W2916601070 cites W3101744125 @default.
- W2916601070 cites W892734299 @default.
- W2916601070 doi "https://doi.org/10.1007/s10853-019-03434-7" @default.
- W2916601070 hasPublicationYear "2019" @default.
- W2916601070 type Work @default.
- W2916601070 sameAs 2916601070 @default.
- W2916601070 citedByCount "6" @default.
- W2916601070 countsByYear W29166010702019 @default.
- W2916601070 countsByYear W29166010702020 @default.