Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916601107> ?p ?o ?g. }
- W2916601107 endingPage "477" @default.
- W2916601107 startingPage "477" @default.
- W2916601107 abstract "Forest ecosystems provide critical ecosystem goods and services, and any disturbance-induced changes can have cascading impacts on natural processes and human socioeconomic systems. Forest disturbance frequency, intensity, and spatial and temporal scale can be altered by changes in climate and human activity, but without baseline forest disturbance data, it is impossible to quantify the magnitude and extent of these changes. Methodologies for quantifying forest cover change have been developed at the regional-to-global scale via several approaches that utilize data from high (e.g., IKONOS, Quickbird), moderate (e.g., Landsat) and coarse (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) spatial resolution satellite imagery. While detection and quantification of forest cover change is an important first step, attribution of disturbance type is critical missing information for establishing baseline data and effective land management policy. The objective here was to prototype and test a semi-automated methodology for characterizing high-magnitude (>50% forest cover loss) forest disturbance agents (stress, fire, stem removal) across the conterminous United States (CONUS) from 2003–2011 using the existing University of Maryland Landsat-based Global Forest Change Product and Web-Enabled Landsat Data (WELD). The Forest Cover Change maps were segmented into objects based on temporal and spatial adjacency, and object-level spectral metrics were calculated based on WELD reflectance time series. A training set of objects with known disturbance type was developed via high-resolution imagery and expert interpretation, ingested into a Random Forest classifier, which was then used to attribute disturbance type to all 15,179,430 forest loss objects across CONUS. Accuracy assessments of the resulting classification was conducted with an independent dataset consisting of 4156 forest loss objects. Overall accuracy was 88.1%, with the highest omission and commission errors observed for fire (32.8%) and stress (31.9%) disturbances, respectively. Of the total 172,686 km2 of forest loss, 83.75% was attributed to stem removal, 10.92% to fire and 5.33% to stress. The semi-automated approach described in this paper provides a promising framework for the systematic characterization and monitoring of forest disturbance regimes." @default.
- W2916601107 created "2019-03-02" @default.
- W2916601107 creator A5004475652 @default.
- W2916601107 creator A5030974111 @default.
- W2916601107 creator A5040034589 @default.
- W2916601107 date "2019-02-26" @default.
- W2916601107 modified "2023-09-27" @default.
- W2916601107 title "Object-Based Classification of Forest Disturbance Types in the Conterminous United States" @default.
- W2916601107 cites W1834239181 @default.
- W2916601107 cites W1848635763 @default.
- W2916601107 cites W1889848888 @default.
- W2916601107 cites W1951684732 @default.
- W2916601107 cites W1967715794 @default.
- W2916601107 cites W1967726776 @default.
- W2916601107 cites W1974182496 @default.
- W2916601107 cites W1976129996 @default.
- W2916601107 cites W1979210946 @default.
- W2916601107 cites W1981213426 @default.
- W2916601107 cites W1983640898 @default.
- W2916601107 cites W1984281128 @default.
- W2916601107 cites W1990653740 @default.
- W2916601107 cites W1994508789 @default.
- W2916601107 cites W1998733631 @default.
- W2916601107 cites W2000081274 @default.
- W2916601107 cites W2007401784 @default.
- W2916601107 cites W2022224360 @default.
- W2916601107 cites W2024805021 @default.
- W2916601107 cites W2034077112 @default.
- W2916601107 cites W2053886687 @default.
- W2916601107 cites W2056435747 @default.
- W2916601107 cites W2057504927 @default.
- W2916601107 cites W2063623478 @default.
- W2916601107 cites W2075845155 @default.
- W2916601107 cites W2076037383 @default.
- W2916601107 cites W2079594423 @default.
- W2916601107 cites W2082958922 @default.
- W2916601107 cites W2086154193 @default.
- W2916601107 cites W2086941309 @default.
- W2916601107 cites W2088557643 @default.
- W2916601107 cites W2095410437 @default.
- W2916601107 cites W2103017303 @default.
- W2916601107 cites W2106632946 @default.
- W2916601107 cites W2109176572 @default.
- W2916601107 cites W2111065693 @default.
- W2916601107 cites W2114892242 @default.
- W2916601107 cites W2116888634 @default.
- W2916601107 cites W2118364838 @default.
- W2916601107 cites W2118978333 @default.
- W2916601107 cites W2121025662 @default.
- W2916601107 cites W2121690928 @default.
- W2916601107 cites W2125985983 @default.
- W2916601107 cites W2130239832 @default.
- W2916601107 cites W2138800506 @default.
- W2916601107 cites W2139709933 @default.
- W2916601107 cites W2140908571 @default.
- W2916601107 cites W2143481518 @default.
- W2916601107 cites W2155632266 @default.
- W2916601107 cites W2157026765 @default.
- W2916601107 cites W2158129280 @default.
- W2916601107 cites W2158864811 @default.
- W2916601107 cites W2161424977 @default.
- W2916601107 cites W2162416391 @default.
- W2916601107 cites W2164943663 @default.
- W2916601107 cites W2171370728 @default.
- W2916601107 cites W2188083314 @default.
- W2916601107 cites W2199031689 @default.
- W2916601107 cites W2261059368 @default.
- W2916601107 cites W2270715058 @default.
- W2916601107 cites W2464592297 @default.
- W2916601107 cites W2510975534 @default.
- W2916601107 cites W2531432828 @default.
- W2916601107 cites W2561149292 @default.
- W2916601107 cites W2561533227 @default.
- W2916601107 cites W2608255143 @default.
- W2916601107 cites W2622453182 @default.
- W2916601107 cites W2735087910 @default.
- W2916601107 cites W2751786729 @default.
- W2916601107 cites W2903201937 @default.
- W2916601107 cites W2911964244 @default.
- W2916601107 cites W4246090800 @default.
- W2916601107 cites W773459379 @default.
- W2916601107 doi "https://doi.org/10.3390/rs11050477" @default.
- W2916601107 hasPublicationYear "2019" @default.
- W2916601107 type Work @default.
- W2916601107 sameAs 2916601107 @default.
- W2916601107 citedByCount "32" @default.
- W2916601107 countsByYear W29166011072019 @default.
- W2916601107 countsByYear W29166011072020 @default.
- W2916601107 countsByYear W29166011072021 @default.
- W2916601107 countsByYear W29166011072022 @default.
- W2916601107 countsByYear W29166011072023 @default.
- W2916601107 crossrefType "journal-article" @default.
- W2916601107 hasAuthorship W2916601107A5004475652 @default.
- W2916601107 hasAuthorship W2916601107A5030974111 @default.
- W2916601107 hasAuthorship W2916601107A5040034589 @default.
- W2916601107 hasBestOaLocation W29166011071 @default.
- W2916601107 hasConcept C110872660 @default.
- W2916601107 hasConcept C127413603 @default.