Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916614616> ?p ?o ?g. }
- W2916614616 endingPage "418" @default.
- W2916614616 startingPage "398" @default.
- W2916614616 abstract "Air pollution impact assessment is a major objective for various community councils in large cities, which have lately redirected their attention towards using more low-cost sensing units supported by citizen involvement. However, there is a lack of research studies investigating real-time mobile air-quality measurement through smart sensing units and even more of any data-driven modelling techniques that could be deployed to predict air quality accurately from the generated data-sets. This paper addresses these challenges by: a) proposing a comparative and detailed investigation of various air quality monitoring devices (both fixed and mobile), tested through field measurements and citizen sensing in an eco-neighbourhood from Lorraine, France, and by b) proposing a machine learning approach to evaluate the accuracy and potential of such mobile generated data for air quality prediction. The air quality evaluation consists of three experimenting protocols: a) first, we installed fixed passive tubes for monitoring the nitrogen dioxide concentrations placed in strategic locations highly affected by traffic circulation in an eco-neighbourhood, b) second, we monitored the nitrogen dioxide registered by citizens using smart and mobile pollution units carried at breathing level; results revealed that mobile-captured concentrations were 3–5 times higher than the ones registered by passive-static monitoring tubes and c) third, we compared different mobile pollution stations working simultaneously, which revealed noticeable differences in terms of result variability and sensitivity. Finally, we applied a machine learning modelling by using decision trees and neural networks on the mobile-generated data and show that humidity and noise are the most important factors influencing the prediction of nitrogen dioxide concentrations of mobile stations." @default.
- W2916614616 created "2019-03-02" @default.
- W2916614616 creator A5000218861 @default.
- W2916614616 creator A5017482056 @default.
- W2916614616 creator A5050132206 @default.
- W2916614616 creator A5064317252 @default.
- W2916614616 creator A5087297482 @default.
- W2916614616 date "2019-06-01" @default.
- W2916614616 modified "2023-10-05" @default.
- W2916614616 title "Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling" @default.
- W2916614616 cites W1489798071 @default.
- W2916614616 cites W1992611087 @default.
- W2916614616 cites W2012245676 @default.
- W2916614616 cites W2019383010 @default.
- W2916614616 cites W2024639815 @default.
- W2916614616 cites W2035930426 @default.
- W2916614616 cites W2039636725 @default.
- W2916614616 cites W2064127932 @default.
- W2916614616 cites W2079811428 @default.
- W2916614616 cites W2079934770 @default.
- W2916614616 cites W2087279456 @default.
- W2916614616 cites W2092894070 @default.
- W2916614616 cites W2106308613 @default.
- W2916614616 cites W2117788706 @default.
- W2916614616 cites W2149259182 @default.
- W2916614616 cites W2161614126 @default.
- W2916614616 cites W2733809378 @default.
- W2916614616 cites W2765271885 @default.
- W2916614616 cites W2804659068 @default.
- W2916614616 cites W2807710380 @default.
- W2916614616 cites W2808893058 @default.
- W2916614616 cites W2890488542 @default.
- W2916614616 cites W2894263072 @default.
- W2916614616 cites W2897697461 @default.
- W2916614616 cites W2898194849 @default.
- W2916614616 cites W2898461917 @default.
- W2916614616 cites W4235953583 @default.
- W2916614616 doi "https://doi.org/10.1016/j.jclepro.2019.02.179" @default.
- W2916614616 hasPublicationYear "2019" @default.
- W2916614616 type Work @default.
- W2916614616 sameAs 2916614616 @default.
- W2916614616 citedByCount "53" @default.
- W2916614616 countsByYear W29166146162018 @default.
- W2916614616 countsByYear W29166146162019 @default.
- W2916614616 countsByYear W29166146162020 @default.
- W2916614616 countsByYear W29166146162021 @default.
- W2916614616 countsByYear W29166146162022 @default.
- W2916614616 countsByYear W29166146162023 @default.
- W2916614616 crossrefType "journal-article" @default.
- W2916614616 hasAuthorship W2916614616A5000218861 @default.
- W2916614616 hasAuthorship W2916614616A5017482056 @default.
- W2916614616 hasAuthorship W2916614616A5050132206 @default.
- W2916614616 hasAuthorship W2916614616A5064317252 @default.
- W2916614616 hasAuthorship W2916614616A5087297482 @default.
- W2916614616 hasBestOaLocation W29166146163 @default.
- W2916614616 hasConcept C126314574 @default.
- W2916614616 hasConcept C127413603 @default.
- W2916614616 hasConcept C153294291 @default.
- W2916614616 hasConcept C176217482 @default.
- W2916614616 hasConcept C178790620 @default.
- W2916614616 hasConcept C185592680 @default.
- W2916614616 hasConcept C18903297 @default.
- W2916614616 hasConcept C205649164 @default.
- W2916614616 hasConcept C21547014 @default.
- W2916614616 hasConcept C24756922 @default.
- W2916614616 hasConcept C39432304 @default.
- W2916614616 hasConcept C41008148 @default.
- W2916614616 hasConcept C521259446 @default.
- W2916614616 hasConcept C559116025 @default.
- W2916614616 hasConcept C79403827 @default.
- W2916614616 hasConcept C86803240 @default.
- W2916614616 hasConceptScore W2916614616C126314574 @default.
- W2916614616 hasConceptScore W2916614616C127413603 @default.
- W2916614616 hasConceptScore W2916614616C153294291 @default.
- W2916614616 hasConceptScore W2916614616C176217482 @default.
- W2916614616 hasConceptScore W2916614616C178790620 @default.
- W2916614616 hasConceptScore W2916614616C185592680 @default.
- W2916614616 hasConceptScore W2916614616C18903297 @default.
- W2916614616 hasConceptScore W2916614616C205649164 @default.
- W2916614616 hasConceptScore W2916614616C21547014 @default.
- W2916614616 hasConceptScore W2916614616C24756922 @default.
- W2916614616 hasConceptScore W2916614616C39432304 @default.
- W2916614616 hasConceptScore W2916614616C41008148 @default.
- W2916614616 hasConceptScore W2916614616C521259446 @default.
- W2916614616 hasConceptScore W2916614616C559116025 @default.
- W2916614616 hasConceptScore W2916614616C79403827 @default.
- W2916614616 hasConceptScore W2916614616C86803240 @default.
- W2916614616 hasLocation W29166146161 @default.
- W2916614616 hasLocation W29166146162 @default.
- W2916614616 hasLocation W29166146163 @default.
- W2916614616 hasOpenAccess W2916614616 @default.
- W2916614616 hasPrimaryLocation W29166146161 @default.
- W2916614616 hasRelatedWork W1057715983 @default.
- W2916614616 hasRelatedWork W2352002076 @default.
- W2916614616 hasRelatedWork W2356572219 @default.
- W2916614616 hasRelatedWork W2356591192 @default.
- W2916614616 hasRelatedWork W3016962860 @default.
- W2916614616 hasRelatedWork W3027298150 @default.