Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916755661> ?p ?o ?g. }
- W2916755661 endingPage "27992" @default.
- W2916755661 startingPage "27983" @default.
- W2916755661 abstract "Neural attention mechanism has achieved many successes in various tasks in natural language processing. However, existing neural attention models based on a densely connected network are loosely related to the attention mechanism found in psychology and neuroscience. Motivated by the finding in neuroscience that human possesses the template-searching attention mechanism, we propose to use convolution operation to simulate attentions and give a mathematical explanation of our neural attention model. We then introduce a new network architecture, which combines a recurrent neural network with our convolution-based attention model and further stacks an attention-based neural model to build a hierarchical sentiment classification model. The experimental results show that our proposed models can capture salient parts of the text to improve the performance of sentiment classification at both the sentence level and the document level." @default.
- W2916755661 created "2019-03-02" @default.
- W2916755661 creator A5007348590 @default.
- W2916755661 creator A5015709853 @default.
- W2916755661 creator A5026719663 @default.
- W2916755661 creator A5049098538 @default.
- W2916755661 creator A5062168574 @default.
- W2916755661 date "2019-01-01" @default.
- W2916755661 modified "2023-10-16" @default.
- W2916755661 title "Convolution-Based Neural Attention With Applications to Sentiment Classification" @default.
- W2916755661 cites W1832693441 @default.
- W2916755661 cites W1902237438 @default.
- W2916755661 cites W1982554717 @default.
- W2916755661 cites W2001892351 @default.
- W2916755661 cites W2031596661 @default.
- W2916755661 cites W2035411645 @default.
- W2916755661 cites W2039543580 @default.
- W2916755661 cites W2042244977 @default.
- W2916755661 cites W2044933868 @default.
- W2916755661 cites W2064675550 @default.
- W2916755661 cites W2092308848 @default.
- W2916755661 cites W2108420397 @default.
- W2916755661 cites W2112796928 @default.
- W2916755661 cites W2114524997 @default.
- W2916755661 cites W2119717200 @default.
- W2916755661 cites W2120615054 @default.
- W2916755661 cites W2131605659 @default.
- W2916755661 cites W2142972908 @default.
- W2916755661 cites W2163455955 @default.
- W2916755661 cites W2166706824 @default.
- W2916755661 cites W2170436435 @default.
- W2916755661 cites W2250966211 @default.
- W2916755661 cites W2470673105 @default.
- W2916755661 cites W2556605533 @default.
- W2916755661 cites W2586756136 @default.
- W2916755661 cites W2767210791 @default.
- W2916755661 cites W2768558358 @default.
- W2916755661 cites W2786411768 @default.
- W2916755661 cites W2962965405 @default.
- W2916755661 cites W2963344337 @default.
- W2916755661 cites W2963355447 @default.
- W2916755661 cites W2963626623 @default.
- W2916755661 cites W3104486441 @default.
- W2916755661 cites W4211186029 @default.
- W2916755661 doi "https://doi.org/10.1109/access.2019.2900335" @default.
- W2916755661 hasPublicationYear "2019" @default.
- W2916755661 type Work @default.
- W2916755661 sameAs 2916755661 @default.
- W2916755661 citedByCount "47" @default.
- W2916755661 countsByYear W29167556612019 @default.
- W2916755661 countsByYear W29167556612020 @default.
- W2916755661 countsByYear W29167556612021 @default.
- W2916755661 countsByYear W29167556612022 @default.
- W2916755661 countsByYear W29167556612023 @default.
- W2916755661 crossrefType "journal-article" @default.
- W2916755661 hasAuthorship W2916755661A5007348590 @default.
- W2916755661 hasAuthorship W2916755661A5015709853 @default.
- W2916755661 hasAuthorship W2916755661A5026719663 @default.
- W2916755661 hasAuthorship W2916755661A5049098538 @default.
- W2916755661 hasAuthorship W2916755661A5062168574 @default.
- W2916755661 hasBestOaLocation W29167556611 @default.
- W2916755661 hasConcept C111472728 @default.
- W2916755661 hasConcept C119857082 @default.
- W2916755661 hasConcept C123657996 @default.
- W2916755661 hasConcept C138885662 @default.
- W2916755661 hasConcept C142362112 @default.
- W2916755661 hasConcept C153349607 @default.
- W2916755661 hasConcept C154945302 @default.
- W2916755661 hasConcept C2777530160 @default.
- W2916755661 hasConcept C2780719617 @default.
- W2916755661 hasConcept C41008148 @default.
- W2916755661 hasConcept C45347329 @default.
- W2916755661 hasConcept C50644808 @default.
- W2916755661 hasConcept C66402592 @default.
- W2916755661 hasConcept C89611455 @default.
- W2916755661 hasConceptScore W2916755661C111472728 @default.
- W2916755661 hasConceptScore W2916755661C119857082 @default.
- W2916755661 hasConceptScore W2916755661C123657996 @default.
- W2916755661 hasConceptScore W2916755661C138885662 @default.
- W2916755661 hasConceptScore W2916755661C142362112 @default.
- W2916755661 hasConceptScore W2916755661C153349607 @default.
- W2916755661 hasConceptScore W2916755661C154945302 @default.
- W2916755661 hasConceptScore W2916755661C2777530160 @default.
- W2916755661 hasConceptScore W2916755661C2780719617 @default.
- W2916755661 hasConceptScore W2916755661C41008148 @default.
- W2916755661 hasConceptScore W2916755661C45347329 @default.
- W2916755661 hasConceptScore W2916755661C50644808 @default.
- W2916755661 hasConceptScore W2916755661C66402592 @default.
- W2916755661 hasConceptScore W2916755661C89611455 @default.
- W2916755661 hasFunder F4320321001 @default.
- W2916755661 hasFunder F4320335087 @default.
- W2916755661 hasLocation W29167556611 @default.
- W2916755661 hasLocation W29167556612 @default.
- W2916755661 hasLocation W29167556613 @default.
- W2916755661 hasOpenAccess W2916755661 @default.
- W2916755661 hasPrimaryLocation W29167556611 @default.
- W2916755661 hasRelatedWork W2975597301 @default.
- W2916755661 hasRelatedWork W3192794374 @default.