Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916816918> ?p ?o ?g. }
- W2916816918 abstract "The advances of next-generation sequencing technology have accelerated study of the microbiome and stimulated the high throughput profiling of metagenomes. The large volume of sequenced data has encouraged the rise of various studies for detecting differentially abundant taxonomic features across healthy and diseased populations, with the ultimate goal of deciphering the relationship between the microbiome diversity and health conditions. As the microbiome data are high-dimensional, typically featuring by uneven sampling depth, overdispersion and a huge amount of zeros, these data characteristics often hamper the downstream analysis. Moreover, the taxonomic features are implicitly imposed by the phylogenetic tree structure and often ignored. To overcome these challenges, we propose a Bayesian hierarchical modeling framework for the analysis of microbiome count data for differential abundance analysis. Under this framework, we introduce a bi-level Bayesian hierarchical model that allows a flexible choice of the count generating process, and hyperpriors in the feature selection scheme. We particularly focus on employing a zero-inflated negative binomial model with a Bayesian nonparametric prior model on the bottom level, and applying Gaussian mixture models for differentially abundant taxa detection on the top level. Our method allows for the simultaneous modeling of sample heterogeneity and detecting differentially abundant taxa. We conducted comprehensive simulations and summarized the improved statistical performances of the proposed model. We applied the model in two real microbiome study datasets and successfully identified biologically validated differentially abundant taxa. We hope that the proposed framework and model can facilitate further microbiome studies and elucidate disease etiology." @default.
- W2916816918 created "2019-03-02" @default.
- W2916816918 creator A5009964025 @default.
- W2916816918 creator A5020073475 @default.
- W2916816918 creator A5052709439 @default.
- W2916816918 creator A5054460729 @default.
- W2916816918 creator A5076832561 @default.
- W2916816918 date "2019-02-23" @default.
- W2916816918 modified "2023-09-23" @default.
- W2916816918 title "Bayesian modeling of microbiome data for differential abundance analysis" @default.
- W2916816918 cites W1523266228 @default.
- W2916816918 cites W171292237 @default.
- W2916816918 cites W1935310079 @default.
- W2916816918 cites W1964027278 @default.
- W2916816918 cites W1980914602 @default.
- W2916816918 cites W1998560094 @default.
- W2916816918 cites W2004014148 @default.
- W2916816918 cites W2006292369 @default.
- W2916816918 cites W2026006003 @default.
- W2916816918 cites W2030597423 @default.
- W2916816918 cites W2034189943 @default.
- W2916816918 cites W2053801811 @default.
- W2916816918 cites W2060915038 @default.
- W2916816918 cites W2072169887 @default.
- W2916816918 cites W2080283023 @default.
- W2916816918 cites W2081984303 @default.
- W2916816918 cites W2085573033 @default.
- W2916816918 cites W2092133600 @default.
- W2916816918 cites W2096139589 @default.
- W2916816918 cites W2107018762 @default.
- W2916816918 cites W2109553965 @default.
- W2916816918 cites W2110065044 @default.
- W2916816918 cites W2114104545 @default.
- W2916816918 cites W2120495574 @default.
- W2916816918 cites W2122131141 @default.
- W2916816918 cites W2130725058 @default.
- W2916816918 cites W2140679462 @default.
- W2916816918 cites W2142165994 @default.
- W2916816918 cites W2144464830 @default.
- W2916816918 cites W2156631105 @default.
- W2916816918 cites W2159347337 @default.
- W2916816918 cites W2161548174 @default.
- W2916816918 cites W2163903604 @default.
- W2916816918 cites W2165909549 @default.
- W2916816918 cites W2170264612 @default.
- W2916816918 cites W2179438025 @default.
- W2916816918 cites W2210190562 @default.
- W2916816918 cites W2285297229 @default.
- W2916816918 cites W2292201701 @default.
- W2916816918 cites W2302003756 @default.
- W2916816918 cites W2386783987 @default.
- W2916816918 cites W2567421046 @default.
- W2916816918 cites W2581853214 @default.
- W2916816918 cites W2582487809 @default.
- W2916816918 cites W2587304885 @default.
- W2916816918 cites W2589674438 @default.
- W2916816918 cites W2592244930 @default.
- W2916816918 cites W2623011248 @default.
- W2916816918 cites W2749187924 @default.
- W2916816918 cites W2792247208 @default.
- W2916816918 cites W2799338397 @default.
- W2916816918 cites W2837018377 @default.
- W2916816918 cites W2888167412 @default.
- W2916816918 cites W2903428492 @default.
- W2916816918 cites W2950036522 @default.
- W2916816918 cites W2952200190 @default.
- W2916816918 cites W2963622973 @default.
- W2916816918 cites W3099004071 @default.
- W2916816918 cites W3103302162 @default.
- W2916816918 cites W3141897683 @default.
- W2916816918 cites W755741475 @default.
- W2916816918 cites W2115865619 @default.
- W2916816918 hasPublicationYear "2019" @default.
- W2916816918 type Work @default.
- W2916816918 sameAs 2916816918 @default.
- W2916816918 citedByCount "0" @default.
- W2916816918 crossrefType "posted-content" @default.
- W2916816918 hasAuthorship W2916816918A5009964025 @default.
- W2916816918 hasAuthorship W2916816918A5020073475 @default.
- W2916816918 hasAuthorship W2916816918A5052709439 @default.
- W2916816918 hasAuthorship W2916816918A5054460729 @default.
- W2916816918 hasAuthorship W2916816918A5076832561 @default.
- W2916816918 hasConcept C100906024 @default.
- W2916816918 hasConcept C104317684 @default.
- W2916816918 hasConcept C105795698 @default.
- W2916816918 hasConcept C107673813 @default.
- W2916816918 hasConcept C117236510 @default.
- W2916816918 hasConcept C119857082 @default.
- W2916816918 hasConcept C124101348 @default.
- W2916816918 hasConcept C143121216 @default.
- W2916816918 hasConcept C15151743 @default.
- W2916816918 hasConcept C154945302 @default.
- W2916816918 hasConcept C160234255 @default.
- W2916816918 hasConcept C33643355 @default.
- W2916816918 hasConcept C33923547 @default.
- W2916816918 hasConcept C41008148 @default.
- W2916816918 hasConcept C54355233 @default.
- W2916816918 hasConcept C60644358 @default.
- W2916816918 hasConcept C61224824 @default.
- W2916816918 hasConcept C86803240 @default.