Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916828210> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2916828210 endingPage "796" @default.
- W2916828210 startingPage "783" @default.
- W2916828210 abstract "We introduce a forecasting system designed to profit from sports-betting market using machine learning. We contribute three main novel ingredients. First, previous attempts to learn models for match-outcome prediction maximized the model’s predictive accuracy as the single criterion. Unlike these approaches, we also reduce the model’s correlation with the bookmaker’s predictions available through the published odds. We show that such an optimized model allows for better profit generation, and the approach is thus a way to ‘exploit’ the bookmaker. The second novelty is in the application of convolutional neural networks for match outcome prediction. The convolution layer enables to leverage a vast number of player-related statistics on its input. Thirdly, we adopt elements of the modern portfolio theory to design a strategy for bet distribution according to the odds and model predictions, trading off profit expectation and variance optimally. These three ingredients combine towards a betting method yielding positive cumulative profits in experiments with NBA data from seasons 2007–2014 systematically, as opposed to alternative methods tested." @default.
- W2916828210 created "2019-03-02" @default.
- W2916828210 creator A5001028714 @default.
- W2916828210 creator A5062388770 @default.
- W2916828210 creator A5083218513 @default.
- W2916828210 date "2019-04-01" @default.
- W2916828210 modified "2023-10-16" @default.
- W2916828210 title "Exploiting sports-betting market using machine learning" @default.
- W2916828210 cites W1454400239 @default.
- W2916828210 cites W1582180750 @default.
- W2916828210 cites W1968507428 @default.
- W2916828210 cites W1978247385 @default.
- W2916828210 cites W1981466855 @default.
- W2916828210 cites W1984934177 @default.
- W2916828210 cites W2034489173 @default.
- W2916828210 cites W2057997183 @default.
- W2916828210 cites W2058731786 @default.
- W2916828210 cites W2078162400 @default.
- W2916828210 cites W2135775480 @default.
- W2916828210 cites W2145480231 @default.
- W2916828210 cites W2153580489 @default.
- W2916828210 cites W2574841627 @default.
- W2916828210 cites W3121231812 @default.
- W2916828210 doi "https://doi.org/10.1016/j.ijforecast.2019.01.001" @default.
- W2916828210 hasPublicationYear "2019" @default.
- W2916828210 type Work @default.
- W2916828210 sameAs 2916828210 @default.
- W2916828210 citedByCount "31" @default.
- W2916828210 countsByYear W29168282102020 @default.
- W2916828210 countsByYear W29168282102021 @default.
- W2916828210 countsByYear W29168282102022 @default.
- W2916828210 countsByYear W29168282102023 @default.
- W2916828210 crossrefType "journal-article" @default.
- W2916828210 hasAuthorship W2916828210A5001028714 @default.
- W2916828210 hasAuthorship W2916828210A5062388770 @default.
- W2916828210 hasAuthorship W2916828210A5083218513 @default.
- W2916828210 hasConcept C106159729 @default.
- W2916828210 hasConcept C119857082 @default.
- W2916828210 hasConcept C138885662 @default.
- W2916828210 hasConcept C143095724 @default.
- W2916828210 hasConcept C149782125 @default.
- W2916828210 hasConcept C151956035 @default.
- W2916828210 hasConcept C153083717 @default.
- W2916828210 hasConcept C154945302 @default.
- W2916828210 hasConcept C162324750 @default.
- W2916828210 hasConcept C165696696 @default.
- W2916828210 hasConcept C175444787 @default.
- W2916828210 hasConcept C181622380 @default.
- W2916828210 hasConcept C27206212 @default.
- W2916828210 hasConcept C2778738651 @default.
- W2916828210 hasConcept C2780821815 @default.
- W2916828210 hasConcept C38652104 @default.
- W2916828210 hasConcept C41008148 @default.
- W2916828210 hasConceptScore W2916828210C106159729 @default.
- W2916828210 hasConceptScore W2916828210C119857082 @default.
- W2916828210 hasConceptScore W2916828210C138885662 @default.
- W2916828210 hasConceptScore W2916828210C143095724 @default.
- W2916828210 hasConceptScore W2916828210C149782125 @default.
- W2916828210 hasConceptScore W2916828210C151956035 @default.
- W2916828210 hasConceptScore W2916828210C153083717 @default.
- W2916828210 hasConceptScore W2916828210C154945302 @default.
- W2916828210 hasConceptScore W2916828210C162324750 @default.
- W2916828210 hasConceptScore W2916828210C165696696 @default.
- W2916828210 hasConceptScore W2916828210C175444787 @default.
- W2916828210 hasConceptScore W2916828210C181622380 @default.
- W2916828210 hasConceptScore W2916828210C27206212 @default.
- W2916828210 hasConceptScore W2916828210C2778738651 @default.
- W2916828210 hasConceptScore W2916828210C2780821815 @default.
- W2916828210 hasConceptScore W2916828210C38652104 @default.
- W2916828210 hasConceptScore W2916828210C41008148 @default.
- W2916828210 hasFunder F4320321005 @default.
- W2916828210 hasFunder F4320321006 @default.
- W2916828210 hasIssue "2" @default.
- W2916828210 hasLocation W29168282101 @default.
- W2916828210 hasOpenAccess W2916828210 @default.
- W2916828210 hasPrimaryLocation W29168282101 @default.
- W2916828210 hasRelatedWork W2135486170 @default.
- W2916828210 hasRelatedWork W2331043530 @default.
- W2916828210 hasRelatedWork W2374725260 @default.
- W2916828210 hasRelatedWork W2393933887 @default.
- W2916828210 hasRelatedWork W2608547542 @default.
- W2916828210 hasRelatedWork W2798029542 @default.
- W2916828210 hasRelatedWork W2961085424 @default.
- W2916828210 hasRelatedWork W2997512100 @default.
- W2916828210 hasRelatedWork W3175689139 @default.
- W2916828210 hasRelatedWork W4306674287 @default.
- W2916828210 hasVolume "35" @default.
- W2916828210 isParatext "false" @default.
- W2916828210 isRetracted "false" @default.
- W2916828210 magId "2916828210" @default.
- W2916828210 workType "article" @default.