Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916833537> ?p ?o ?g. }
- W2916833537 abstract "In this chapter, a novel classification methodology for medical disease diagnosis is proposed. The proposed classification operator comprises a stacked autoencoder network cascaded with a softmax layer. The classifier is trained by applying a special training approach, where each layer of the proposed classifier is trained individually and sequentially. The performance of the proposed classifier is compared with a number of representative classification methods from the literature. The experimental results on medical data sets show that the proposed classifier performs better than or at least competitive with classifiers used in this chapter. It is also seen that the proposed classifier can efficiently be used for the diagnosis of medical diseases provided that it is trained with a suitable data set with a sufficient number of medical features obtained from a sufficient number of patients." @default.
- W2916833537 created "2019-03-02" @default.
- W2916833537 creator A5013342066 @default.
- W2916833537 creator A5055140766 @default.
- W2916833537 creator A5076932466 @default.
- W2916833537 creator A5084928308 @default.
- W2916833537 date "2019-01-01" @default.
- W2916833537 modified "2023-09-27" @default.
- W2916833537 title "Application of Deep Neural Networks for Disease Diagnosis Through Medical Data Sets" @default.
- W2916833537 cites W1258010184 @default.
- W2916833537 cites W1483055888 @default.
- W2916833537 cites W1500401801 @default.
- W2916833537 cites W1510073064 @default.
- W2916833537 cites W1806891645 @default.
- W2916833537 cites W1965927354 @default.
- W2916833537 cites W1969557815 @default.
- W2916833537 cites W1989164753 @default.
- W2916833537 cites W2000359198 @default.
- W2916833537 cites W2001276882 @default.
- W2916833537 cites W2005887509 @default.
- W2916833537 cites W2010285723 @default.
- W2916833537 cites W2012552855 @default.
- W2916833537 cites W2012712610 @default.
- W2916833537 cites W2036129195 @default.
- W2916833537 cites W2040895929 @default.
- W2916833537 cites W2043435994 @default.
- W2916833537 cites W2050206309 @default.
- W2916833537 cites W2054048180 @default.
- W2916833537 cites W2065750810 @default.
- W2916833537 cites W2068677783 @default.
- W2916833537 cites W2076707252 @default.
- W2916833537 cites W2093028965 @default.
- W2916833537 cites W2100495367 @default.
- W2916833537 cites W2127416213 @default.
- W2916833537 cites W2139212933 @default.
- W2916833537 cites W2143305386 @default.
- W2916833537 cites W2148239836 @default.
- W2916833537 cites W2155653793 @default.
- W2916833537 cites W2166116063 @default.
- W2916833537 cites W2173314530 @default.
- W2916833537 cites W2207374674 @default.
- W2916833537 cites W2214125478 @default.
- W2916833537 cites W2278157375 @default.
- W2916833537 cites W2279836275 @default.
- W2916833537 cites W2283340597 @default.
- W2916833537 cites W2303028976 @default.
- W2916833537 cites W2594436708 @default.
- W2916833537 cites W2609900267 @default.
- W2916833537 cites W2621254172 @default.
- W2916833537 cites W2763600295 @default.
- W2916833537 cites W2919115771 @default.
- W2916833537 cites W4229900359 @default.
- W2916833537 cites W1966725084 @default.
- W2916833537 cites W2059257214 @default.
- W2916833537 doi "https://doi.org/10.1007/978-3-030-11479-4_12" @default.
- W2916833537 hasPublicationYear "2019" @default.
- W2916833537 type Work @default.
- W2916833537 sameAs 2916833537 @default.
- W2916833537 citedByCount "1" @default.
- W2916833537 countsByYear W29168335372020 @default.
- W2916833537 crossrefType "book-chapter" @default.
- W2916833537 hasAuthorship W2916833537A5013342066 @default.
- W2916833537 hasAuthorship W2916833537A5055140766 @default.
- W2916833537 hasAuthorship W2916833537A5076932466 @default.
- W2916833537 hasAuthorship W2916833537A5084928308 @default.
- W2916833537 hasConcept C101738243 @default.
- W2916833537 hasConcept C119857082 @default.
- W2916833537 hasConcept C124101348 @default.
- W2916833537 hasConcept C153180895 @default.
- W2916833537 hasConcept C154945302 @default.
- W2916833537 hasConcept C188441871 @default.
- W2916833537 hasConcept C41008148 @default.
- W2916833537 hasConcept C50644808 @default.
- W2916833537 hasConcept C51632099 @default.
- W2916833537 hasConcept C95623464 @default.
- W2916833537 hasConceptScore W2916833537C101738243 @default.
- W2916833537 hasConceptScore W2916833537C119857082 @default.
- W2916833537 hasConceptScore W2916833537C124101348 @default.
- W2916833537 hasConceptScore W2916833537C153180895 @default.
- W2916833537 hasConceptScore W2916833537C154945302 @default.
- W2916833537 hasConceptScore W2916833537C188441871 @default.
- W2916833537 hasConceptScore W2916833537C41008148 @default.
- W2916833537 hasConceptScore W2916833537C50644808 @default.
- W2916833537 hasConceptScore W2916833537C51632099 @default.
- W2916833537 hasConceptScore W2916833537C95623464 @default.
- W2916833537 hasLocation W29168335371 @default.
- W2916833537 hasOpenAccess W2916833537 @default.
- W2916833537 hasPrimaryLocation W29168335371 @default.
- W2916833537 hasRelatedWork W11389402 @default.
- W2916833537 hasRelatedWork W1483596504 @default.
- W2916833537 hasRelatedWork W1858553808 @default.
- W2916833537 hasRelatedWork W2004918970 @default.
- W2916833537 hasRelatedWork W2127340775 @default.
- W2916833537 hasRelatedWork W2273564766 @default.
- W2916833537 hasRelatedWork W2470241820 @default.
- W2916833537 hasRelatedWork W2520194964 @default.
- W2916833537 hasRelatedWork W2793525111 @default.
- W2916833537 hasRelatedWork W2998388195 @default.
- W2916833537 hasRelatedWork W3180815602 @default.
- W2916833537 hasRelatedWork W3196545708 @default.