Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916840947> ?p ?o ?g. }
- W2916840947 abstract "Primarily due to increasing security demands and potential commercial and law enforcement applications, automatic face recognition has been a subject of extensive study in the past several decades, and remains an active field of research as of today. As a result, numerous techniques and algorithms for face recognition have been developed, many of them proving effective in one way or another. Nevertheless, it has been realized that constructing good solutions for automatic face recognition remains to be a challenge.The last two decades have witnessed significant progress in the development of new methods for automatic face recognition, some being effective and robust against pose, illumination and facial expression variations, while others being able to deal with large-scale data sets. On all accounts, the development of state-of-the-art face recognition systems has been recognized as one of the most successful applications of image analysis and understanding. Among others, the principal component analysis (PCA) developed in the early 1990s has been a popular unsupervised statistical method for data analysis, compression and visualization, and its application to face recognition problems has proven particularly successful. The importance of PCA consists in providing an efficient data compression with reduced information loss, and efficient implementation using singular value decomposition (SVD) of the data matrix. Since its original proposal, many variations of the standard PCA algorithm have emerged.This thesis is about enhancement and extensions of the standard PCA for face recognition. Our contributions are twofold. First, we develop a set of effective pre-processing techniques that can be employed prior to PCA in order to obtain improved recognition rate. Among these, a technique known as perfect histogram matching (PHM) is shown to perform very well. Other pre-processing methods we present in this thesis include an extended sparse PCA algorithm for dimensionality reduction, a wavelet-transform and total variation minimization technique for dealing with noisy test images, and an occlusion-resolving algorithm. Second, we propose an extended two-dimensional PCA method for face recognition. This method, especially when combined with a PHM pre-processing module, is found to provide superior performance in terms of both recognition rate and computational complexity." @default.
- W2916840947 created "2019-03-02" @default.
- W2916840947 creator A5054057457 @default.
- W2916840947 date "2010-01-01" @default.
- W2916840947 modified "2023-09-26" @default.
- W2916840947 title "Enhancement and extensions of principal component analysis for face recognition" @default.
- W2916840947 cites W1486326986 @default.
- W2916840947 cites W1572394887 @default.
- W2916840947 cites W1581809140 @default.
- W2916840947 cites W1680583314 @default.
- W2916840947 cites W191129667 @default.
- W2916840947 cites W1963784540 @default.
- W2916840947 cites W1966951871 @default.
- W2916840947 cites W1986931325 @default.
- W2916840947 cites W1989368986 @default.
- W2916840947 cites W1989702938 @default.
- W2916840947 cites W2001141328 @default.
- W2916840947 cites W2004243836 @default.
- W2916840947 cites W2036949426 @default.
- W2916840947 cites W2042586642 @default.
- W2916840947 cites W2043694524 @default.
- W2916840947 cites W2045798786 @default.
- W2916840947 cites W2050834445 @default.
- W2916840947 cites W2053186076 @default.
- W2916840947 cites W2053834468 @default.
- W2916840947 cites W2063532964 @default.
- W2916840947 cites W2065034790 @default.
- W2916840947 cites W2072540517 @default.
- W2916840947 cites W2078374251 @default.
- W2916840947 cites W2088119458 @default.
- W2916840947 cites W2089261384 @default.
- W2916840947 cites W2094090158 @default.
- W2916840947 cites W2098693229 @default.
- W2916840947 cites W2102024628 @default.
- W2916840947 cites W2102129292 @default.
- W2916840947 cites W2102544846 @default.
- W2916840947 cites W2103559027 @default.
- W2916840947 cites W2105454037 @default.
- W2916840947 cites W2106349070 @default.
- W2916840947 cites W2107323729 @default.
- W2916840947 cites W2107369107 @default.
- W2916840947 cites W2110410904 @default.
- W2916840947 cites W2115689562 @default.
- W2916840947 cites W2117553576 @default.
- W2916840947 cites W2118064110 @default.
- W2916840947 cites W2120907774 @default.
- W2916840947 cites W2121384726 @default.
- W2916840947 cites W2121647436 @default.
- W2916840947 cites W2123921160 @default.
- W2916840947 cites W2125613399 @default.
- W2916840947 cites W2125874614 @default.
- W2916840947 cites W2126461877 @default.
- W2916840947 cites W2128292157 @default.
- W2916840947 cites W2128659236 @default.
- W2916840947 cites W2129638195 @default.
- W2916840947 cites W2129733001 @default.
- W2916840947 cites W2129812935 @default.
- W2916840947 cites W2130972944 @default.
- W2916840947 cites W2131484288 @default.
- W2916840947 cites W2131518659 @default.
- W2916840947 cites W2134033146 @default.
- W2916840947 cites W2135463994 @default.
- W2916840947 cites W2136860609 @default.
- W2916840947 cites W2141425367 @default.
- W2916840947 cites W2144143728 @default.
- W2916840947 cites W2146047955 @default.
- W2916840947 cites W2146474141 @default.
- W2916840947 cites W2146842127 @default.
- W2916840947 cites W2149807144 @default.
- W2916840947 cites W2150134853 @default.
- W2916840947 cites W2151693816 @default.
- W2916840947 cites W2153244537 @default.
- W2916840947 cites W2154996879 @default.
- W2916840947 cites W2155059504 @default.
- W2916840947 cites W2156718197 @default.
- W2916840947 cites W2157500953 @default.
- W2916840947 cites W2159034950 @default.
- W2916840947 cites W2160126058 @default.
- W2916840947 cites W2160547390 @default.
- W2916840947 cites W2160715448 @default.
- W2916840947 cites W2164452299 @default.
- W2916840947 cites W2164647001 @default.
- W2916840947 cites W2168068730 @default.
- W2916840947 cites W2171193910 @default.
- W2916840947 cites W2296616510 @default.
- W2916840947 cites W2592951924 @default.
- W2916840947 cites W3169507310 @default.
- W2916840947 doi "https://doi.org/10.1007/s11045-009-0099-y)," @default.
- W2916840947 hasPublicationYear "2010" @default.
- W2916840947 type Work @default.
- W2916840947 sameAs 2916840947 @default.
- W2916840947 citedByCount "0" @default.
- W2916840947 crossrefType "dissertation" @default.
- W2916840947 hasAuthorship W2916840947A5054057457 @default.
- W2916840947 hasConcept C119857082 @default.
- W2916840947 hasConcept C124101348 @default.
- W2916840947 hasConcept C144024400 @default.
- W2916840947 hasConcept C153180895 @default.
- W2916840947 hasConcept C154945302 @default.
- W2916840947 hasConcept C202444582 @default.