Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916873148> ?p ?o ?g. }
- W2916873148 endingPage "108836" @default.
- W2916873148 startingPage "108836" @default.
- W2916873148 abstract "Parameter estimation for high-dimensional complex nonlinear turbulent dynamical systems with only partial observations is an important and practical issue. However, most of the existing parameter estimation algorithms are computationally expensive in the presence of a large number of state variables or parameters. In this article, a parameter estimation algorithm is developed for high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. This algorithm exploits the closed analytical form of the conditional statistics to recover the unobserved trajectories in an optimal and deterministic way, which facilitates the calculation of the likelihood function and circumvents the computationally expensive data augmentation approach in sampling the unobserved trajectories as widely used in the literature. Such an efficient method of recovering the unobserved trajectories is then incorporated into a standard Markov chain Monte Carlo (MCMC) algorithm to estimate parameters in complex dynamical system using only a short period of training data. Next, in light of the dynamical features, two effective strategies are developed and incorporated into the algorithm that facilitates the parameter estimation of many high-dimensional systems. The first strategy involves a judicious block decomposition of the state variables such that the original problem is divided into several subproblems coupled in a specific way that allows an extremely cheap parallel computation for the parameter estimation. The second strategy exploits statistical symmetry for a further reduction of the computational cost when the system is statistically homogeneous. The new parameter estimation algorithm is applied to a two-layer Lorenz 96 model with 80 state variables and 162 parameters and the model mimics the realistic features of atmosphere wave propagations and excitable media. The efficient algorithm results in an accurate estimation of the parameters, which further allows a skillful prediction by the model with estimated parameters. Other simple nonlinear models are also used to illustrate the features of the new algorithm." @default.
- W2916873148 created "2019-03-02" @default.
- W2916873148 creator A5015331325 @default.
- W2916873148 creator A5075496148 @default.
- W2916873148 date "2019-11-01" @default.
- W2916873148 modified "2023-09-30" @default.
- W2916873148 title "A new efficient parameter estimation algorithm for high-dimensional complex nonlinear turbulent dynamical systems with partial observations" @default.
- W2916873148 cites W1501586228 @default.
- W2916873148 cites W189129979 @default.
- W2916873148 cites W1907705813 @default.
- W2916873148 cites W1966163772 @default.
- W2916873148 cites W1976552644 @default.
- W2916873148 cites W1977924985 @default.
- W2916873148 cites W1980230793 @default.
- W2916873148 cites W1984004659 @default.
- W2916873148 cites W1994370253 @default.
- W2916873148 cites W1995780830 @default.
- W2916873148 cites W1997774242 @default.
- W2916873148 cites W2000267514 @default.
- W2916873148 cites W2001249873 @default.
- W2916873148 cites W2015352008 @default.
- W2916873148 cites W2016321914 @default.
- W2916873148 cites W2016520450 @default.
- W2916873148 cites W2017052080 @default.
- W2916873148 cites W2021972235 @default.
- W2916873148 cites W2023581626 @default.
- W2916873148 cites W2027980106 @default.
- W2916873148 cites W2030550396 @default.
- W2916873148 cites W2034956278 @default.
- W2916873148 cites W2060759080 @default.
- W2916873148 cites W2061765181 @default.
- W2916873148 cites W2062161760 @default.
- W2916873148 cites W2066628672 @default.
- W2916873148 cites W2071544114 @default.
- W2916873148 cites W2072036814 @default.
- W2916873148 cites W2073142925 @default.
- W2916873148 cites W2080670027 @default.
- W2916873148 cites W2083115723 @default.
- W2916873148 cites W2083402998 @default.
- W2916873148 cites W2088385764 @default.
- W2916873148 cites W2089672344 @default.
- W2916873148 cites W2090805023 @default.
- W2916873148 cites W2091860746 @default.
- W2916873148 cites W2101186745 @default.
- W2916873148 cites W2102440630 @default.
- W2916873148 cites W2107335183 @default.
- W2916873148 cites W2108234032 @default.
- W2916873148 cites W2109982797 @default.
- W2916873148 cites W2111894040 @default.
- W2916873148 cites W2114355185 @default.
- W2916873148 cites W2114363829 @default.
- W2916873148 cites W2116180095 @default.
- W2916873148 cites W2126736494 @default.
- W2916873148 cites W2127921550 @default.
- W2916873148 cites W2131598171 @default.
- W2916873148 cites W2132570625 @default.
- W2916873148 cites W2134160730 @default.
- W2916873148 cites W2134589175 @default.
- W2916873148 cites W2135194391 @default.
- W2916873148 cites W2141394518 @default.
- W2916873148 cites W2147357149 @default.
- W2916873148 cites W2147428031 @default.
- W2916873148 cites W2148191488 @default.
- W2916873148 cites W2148474597 @default.
- W2916873148 cites W2152977846 @default.
- W2916873148 cites W2155870951 @default.
- W2916873148 cites W2162340617 @default.
- W2916873148 cites W2343057691 @default.
- W2916873148 cites W2402025460 @default.
- W2916873148 cites W2591033096 @default.
- W2916873148 cites W2769705890 @default.
- W2916873148 cites W2810234128 @default.
- W2916873148 cites W2887053799 @default.
- W2916873148 cites W2889346967 @default.
- W2916873148 cites W2899795787 @default.
- W2916873148 cites W4245883374 @default.
- W2916873148 cites W4254551825 @default.
- W2916873148 cites W4362192038 @default.
- W2916873148 cites W771430547 @default.
- W2916873148 doi "https://doi.org/10.1016/j.jcp.2019.07.035" @default.
- W2916873148 hasPublicationYear "2019" @default.
- W2916873148 type Work @default.
- W2916873148 sameAs 2916873148 @default.
- W2916873148 citedByCount "7" @default.
- W2916873148 countsByYear W29168731482020 @default.
- W2916873148 countsByYear W29168731482021 @default.
- W2916873148 countsByYear W29168731482023 @default.
- W2916873148 crossrefType "journal-article" @default.
- W2916873148 hasAuthorship W2916873148A5015331325 @default.
- W2916873148 hasAuthorship W2916873148A5075496148 @default.
- W2916873148 hasBestOaLocation W29168731481 @default.
- W2916873148 hasConcept C105795698 @default.
- W2916873148 hasConcept C111350023 @default.
- W2916873148 hasConcept C11413529 @default.
- W2916873148 hasConcept C121332964 @default.
- W2916873148 hasConcept C126255220 @default.
- W2916873148 hasConcept C158622935 @default.
- W2916873148 hasConcept C167928553 @default.