Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916874927> ?p ?o ?g. }
- W2916874927 endingPage "185003" @default.
- W2916874927 startingPage "185003" @default.
- W2916874927 abstract "Cell nuclei image segmentation technology can help researchers observe each cell's stress response to drug treatment. However, it is still a challenge to accurately segment the adherent cell nuclei. At present, image segmentation based on a fully convolutional network (FCN) is attracting researchers' attention. We propose a multiple FCN architecture and repetitive training (M-FCN-RT) method to learn features of cell nucleus images. In M-FCN-RT, the multiple FCN (M-FCN) architecture is composed of several single FCNs (S-FCNs) with the same structure, and each FCN is used to learn the specific features of image datasets. In this paper, the M-FCN contains three FCNs; FCN1-2, FCN3 and FCNB. FCN1-2 and FCN3 are respectively used to learn the spatial features of cell nuclei for generating probability maps to indicate nucleus regions of an image; FCNB (boundary FCN) is used to learn the edge features of cell nuclei for generating the nucleus boundary. For the training of each FCN, we propose a repetitive training (RT) method to improve the classification accuracy of the model. To segment cell nuclei, we finally propose an algorithm combining the probability map and boundary (PMB) to segment the adherent nuclei. This paper uses a public opening nucleus image dataset to train, verify and evaluate the proposed M-FCN-RT and PMB methods. Our M-FCN-RT method achieves a high Dice similarity coefficient (DSC) of 92.11%, 95.64% and 87.99% on the three types of sub-datasets respectively for probability maps. In addition, segmentation experimental results show the PMB method is more effective and efficient compared with other methods." @default.
- W2916874927 created "2019-03-02" @default.
- W2916874927 creator A5051956486 @default.
- W2916874927 creator A5058786949 @default.
- W2916874927 creator A5062082438 @default.
- W2916874927 creator A5083254540 @default.
- W2916874927 date "2019-09-11" @default.
- W2916874927 modified "2023-09-27" @default.
- W2916874927 title "A segmentation method combining probability map and boundary based on multiple fully convolutional networks and repetitive training" @default.
- W2916874927 cites W136967570 @default.
- W2916874927 cites W1500029988 @default.
- W2916874927 cites W1677182931 @default.
- W2916874927 cites W1901129140 @default.
- W2916874927 cites W1987869189 @default.
- W2916874927 cites W2015475217 @default.
- W2916874927 cites W2026448092 @default.
- W2916874927 cites W2043034051 @default.
- W2916874927 cites W2046805737 @default.
- W2916874927 cites W2056116011 @default.
- W2916874927 cites W2086959830 @default.
- W2916874927 cites W2092820391 @default.
- W2916874927 cites W2100138660 @default.
- W2916874927 cites W2100383758 @default.
- W2916874927 cites W2104448846 @default.
- W2916874927 cites W2107554012 @default.
- W2916874927 cites W2114294967 @default.
- W2916874927 cites W2124351162 @default.
- W2916874927 cites W2133866056 @default.
- W2916874927 cites W2136922672 @default.
- W2916874927 cites W2142332605 @default.
- W2916874927 cites W2143251344 @default.
- W2916874927 cites W2145023731 @default.
- W2916874927 cites W2151538727 @default.
- W2916874927 cites W2167279371 @default.
- W2916874927 cites W2190348453 @default.
- W2916874927 cites W2253429366 @default.
- W2916874927 cites W2280351290 @default.
- W2916874927 cites W2296924750 @default.
- W2916874927 cites W2305684009 @default.
- W2916874927 cites W2325636956 @default.
- W2916874927 cites W2344912502 @default.
- W2916874927 cites W2395611524 @default.
- W2916874927 cites W2463367539 @default.
- W2916874927 cites W2534622136 @default.
- W2916874927 cites W2555772764 @default.
- W2916874927 cites W2587087465 @default.
- W2916874927 cites W2592905743 @default.
- W2916874927 cites W2628702118 @default.
- W2916874927 cites W2738088905 @default.
- W2916874927 cites W2768975974 @default.
- W2916874927 cites W2793002108 @default.
- W2916874927 cites W2793613333 @default.
- W2916874927 cites W2806070179 @default.
- W2916874927 cites W2919115771 @default.
- W2916874927 doi "https://doi.org/10.1088/1361-6560/ab0a90" @default.
- W2916874927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30808019" @default.
- W2916874927 hasPublicationYear "2019" @default.
- W2916874927 type Work @default.
- W2916874927 sameAs 2916874927 @default.
- W2916874927 citedByCount "1" @default.
- W2916874927 countsByYear W29168749272022 @default.
- W2916874927 crossrefType "journal-article" @default.
- W2916874927 hasAuthorship W2916874927A5051956486 @default.
- W2916874927 hasAuthorship W2916874927A5058786949 @default.
- W2916874927 hasAuthorship W2916874927A5062082438 @default.
- W2916874927 hasAuthorship W2916874927A5083254540 @default.
- W2916874927 hasConcept C103278499 @default.
- W2916874927 hasConcept C105795698 @default.
- W2916874927 hasConcept C115961682 @default.
- W2916874927 hasConcept C124504099 @default.
- W2916874927 hasConcept C134306372 @default.
- W2916874927 hasConcept C153180895 @default.
- W2916874927 hasConcept C154945302 @default.
- W2916874927 hasConcept C22029948 @default.
- W2916874927 hasConcept C2780723820 @default.
- W2916874927 hasConcept C33923547 @default.
- W2916874927 hasConcept C41008148 @default.
- W2916874927 hasConcept C62354387 @default.
- W2916874927 hasConcept C86803240 @default.
- W2916874927 hasConcept C89600930 @default.
- W2916874927 hasConcept C95444343 @default.
- W2916874927 hasConceptScore W2916874927C103278499 @default.
- W2916874927 hasConceptScore W2916874927C105795698 @default.
- W2916874927 hasConceptScore W2916874927C115961682 @default.
- W2916874927 hasConceptScore W2916874927C124504099 @default.
- W2916874927 hasConceptScore W2916874927C134306372 @default.
- W2916874927 hasConceptScore W2916874927C153180895 @default.
- W2916874927 hasConceptScore W2916874927C154945302 @default.
- W2916874927 hasConceptScore W2916874927C22029948 @default.
- W2916874927 hasConceptScore W2916874927C2780723820 @default.
- W2916874927 hasConceptScore W2916874927C33923547 @default.
- W2916874927 hasConceptScore W2916874927C41008148 @default.
- W2916874927 hasConceptScore W2916874927C62354387 @default.
- W2916874927 hasConceptScore W2916874927C86803240 @default.
- W2916874927 hasConceptScore W2916874927C89600930 @default.
- W2916874927 hasConceptScore W2916874927C95444343 @default.
- W2916874927 hasFunder F4320321001 @default.
- W2916874927 hasIssue "18" @default.