Matches in SemOpenAlex for { <https://semopenalex.org/work/W2916919706> ?p ?o ?g. }
- W2916919706 abstract "Single-particle trajectories measured in microscopy experiments contain important information about dynamic processes occurring in a range of materials including living cells and tissues. However, extracting that information is not a trivial task due to the stochastic nature of the particles' movement and the sampling noise. In this paper, we adopt a deep-learning method known as a convolutional neural network (CNN) to classify modes of diffusion from given trajectories. We compare this fully automated approach working with raw data to classical machine learning techniques that require data preprocessing and extraction of human-engineered features from the trajectories to feed classifiers like random forest or gradient boosting. All methods are tested using simulated trajectories for which the underlying physical model is known. From the results it follows that CNN is usually slightly better than the feature-based methods, but at the cost of much longer processing times. Moreover, there are still some borderline cases in which the classical methods perform better than CNN." @default.
- W2916919706 created "2019-03-02" @default.
- W2916919706 creator A5034612031 @default.
- W2916919706 creator A5041145388 @default.
- W2916919706 creator A5068450923 @default.
- W2916919706 date "2019-09-20" @default.
- W2916919706 modified "2023-10-14" @default.
- W2916919706 title "Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach" @default.
- W2916919706 cites W1967071544 @default.
- W2916919706 cites W1975846642 @default.
- W2916919706 cites W1977177161 @default.
- W2916919706 cites W1986490461 @default.
- W2916919706 cites W1990912370 @default.
- W2916919706 cites W1991515822 @default.
- W2916919706 cites W1994687372 @default.
- W2916919706 cites W2001221216 @default.
- W2916919706 cites W2003113123 @default.
- W2916919706 cites W2007547453 @default.
- W2916919706 cites W2015404233 @default.
- W2916919706 cites W2017038627 @default.
- W2916919706 cites W2022825311 @default.
- W2916919706 cites W2026430219 @default.
- W2916919706 cites W2031753087 @default.
- W2916919706 cites W2034602246 @default.
- W2916919706 cites W2054821964 @default.
- W2916919706 cites W2055570674 @default.
- W2916919706 cites W2067790068 @default.
- W2916919706 cites W2070493638 @default.
- W2916919706 cites W2070554638 @default.
- W2916919706 cites W2085498434 @default.
- W2916919706 cites W2085796374 @default.
- W2916919706 cites W2096013004 @default.
- W2916919706 cites W2099212518 @default.
- W2916919706 cites W2112796928 @default.
- W2916919706 cites W2113242816 @default.
- W2916919706 cites W2122872379 @default.
- W2916919706 cites W2128350437 @default.
- W2916919706 cites W2135438092 @default.
- W2916919706 cites W2147688960 @default.
- W2916919706 cites W2150406181 @default.
- W2916919706 cites W2152157469 @default.
- W2916919706 cites W2162287937 @default.
- W2916919706 cites W2166241213 @default.
- W2916919706 cites W2171177491 @default.
- W2916919706 cites W2207388150 @default.
- W2916919706 cites W2219267987 @default.
- W2916919706 cites W2258076603 @default.
- W2916919706 cites W2337765428 @default.
- W2916919706 cites W2346473394 @default.
- W2916919706 cites W2371638596 @default.
- W2916919706 cites W2487770199 @default.
- W2916919706 cites W2575265009 @default.
- W2916919706 cites W2615256066 @default.
- W2916919706 cites W2774182310 @default.
- W2916919706 cites W2787020583 @default.
- W2916919706 cites W2911964244 @default.
- W2916919706 cites W2950920049 @default.
- W2916919706 cites W3101982572 @default.
- W2916919706 cites W4205947740 @default.
- W2916919706 cites W4236854226 @default.
- W2916919706 doi "https://doi.org/10.1103/physreve.100.032410" @default.
- W2916919706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31640019" @default.
- W2916919706 hasPublicationYear "2019" @default.
- W2916919706 type Work @default.
- W2916919706 sameAs 2916919706 @default.
- W2916919706 citedByCount "73" @default.
- W2916919706 countsByYear W29169197062019 @default.
- W2916919706 countsByYear W29169197062020 @default.
- W2916919706 countsByYear W29169197062021 @default.
- W2916919706 countsByYear W29169197062022 @default.
- W2916919706 countsByYear W29169197062023 @default.
- W2916919706 crossrefType "journal-article" @default.
- W2916919706 hasAuthorship W2916919706A5034612031 @default.
- W2916919706 hasAuthorship W2916919706A5041145388 @default.
- W2916919706 hasAuthorship W2916919706A5068450923 @default.
- W2916919706 hasBestOaLocation W29169197062 @default.
- W2916919706 hasConcept C108583219 @default.
- W2916919706 hasConcept C119857082 @default.
- W2916919706 hasConcept C138885662 @default.
- W2916919706 hasConcept C153180895 @default.
- W2916919706 hasConcept C154945302 @default.
- W2916919706 hasConcept C15744967 @default.
- W2916919706 hasConcept C159985019 @default.
- W2916919706 hasConcept C169258074 @default.
- W2916919706 hasConcept C192562407 @default.
- W2916919706 hasConcept C19417346 @default.
- W2916919706 hasConcept C204323151 @default.
- W2916919706 hasConcept C2775936607 @default.
- W2916919706 hasConcept C2776401178 @default.
- W2916919706 hasConcept C34736171 @default.
- W2916919706 hasConcept C41008148 @default.
- W2916919706 hasConcept C41895202 @default.
- W2916919706 hasConcept C46686674 @default.
- W2916919706 hasConcept C52622490 @default.
- W2916919706 hasConcept C81363708 @default.
- W2916919706 hasConceptScore W2916919706C108583219 @default.
- W2916919706 hasConceptScore W2916919706C119857082 @default.
- W2916919706 hasConceptScore W2916919706C138885662 @default.
- W2916919706 hasConceptScore W2916919706C153180895 @default.
- W2916919706 hasConceptScore W2916919706C154945302 @default.