Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917021784> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2917021784 abstract "Predicting the direction of assets have been an active area of study and a difficult task. Machine learning models have been used to build robust models to model the above task. Ensemble methods is one of them showing results better than a single supervised method. In this paper, we have used generative and discriminative classifiers to create the stack, particularly 3 generative and 6 discriminative classifiers and optimized over one-layer Neural Network to model the direction of price cryptocurrencies. Features used are technical indicators used are not limited to trend, momentum, volume, volatility indicators, and sentiment analysis has also been used to gain useful insight combined with the above features. For Cross-validation, Purged Walk forward cross-validation has been used. In terms of accuracy, we have done a comparative analysis of the performance of Ensemble method with Stacking and Ensemble method with blending. We have also developed a methodology for combined features importance for the stacked model. Important indicators are also identified based on feature importance." @default.
- W2917021784 created "2019-03-02" @default.
- W2917021784 creator A5051645036 @default.
- W2917021784 creator A5059682451 @default.
- W2917021784 creator A5066057007 @default.
- W2917021784 creator A5074926135 @default.
- W2917021784 date "2019-02-21" @default.
- W2917021784 modified "2023-10-06" @default.
- W2917021784 title "Stacking with Neural network for Cryptocurrency investment" @default.
- W2917021784 cites W1986145156 @default.
- W2917021784 cites W2055503689 @default.
- W2917021784 cites W2163614729 @default.
- W2917021784 cites W2510722883 @default.
- W2917021784 cites W2775379762 @default.
- W2917021784 cites W2780186126 @default.
- W2917021784 cites W2781849598 @default.
- W2917021784 cites W2783474735 @default.
- W2917021784 cites W2798522719 @default.
- W2917021784 cites W2905918156 @default.
- W2917021784 hasPublicationYear "2019" @default.
- W2917021784 type Work @default.
- W2917021784 sameAs 2917021784 @default.
- W2917021784 citedByCount "2" @default.
- W2917021784 countsByYear W29170217842019 @default.
- W2917021784 countsByYear W29170217842020 @default.
- W2917021784 crossrefType "posted-content" @default.
- W2917021784 hasAuthorship W2917021784A5051645036 @default.
- W2917021784 hasAuthorship W2917021784A5059682451 @default.
- W2917021784 hasAuthorship W2917021784A5066057007 @default.
- W2917021784 hasAuthorship W2917021784A5074926135 @default.
- W2917021784 hasConcept C119857082 @default.
- W2917021784 hasConcept C127413603 @default.
- W2917021784 hasConcept C138885662 @default.
- W2917021784 hasConcept C153180895 @default.
- W2917021784 hasConcept C154945302 @default.
- W2917021784 hasConcept C167966045 @default.
- W2917021784 hasConcept C180706569 @default.
- W2917021784 hasConcept C201995342 @default.
- W2917021784 hasConcept C2776401178 @default.
- W2917021784 hasConcept C2780451532 @default.
- W2917021784 hasConcept C38652104 @default.
- W2917021784 hasConcept C39890363 @default.
- W2917021784 hasConcept C41008148 @default.
- W2917021784 hasConcept C41895202 @default.
- W2917021784 hasConcept C45942800 @default.
- W2917021784 hasConcept C50644808 @default.
- W2917021784 hasConcept C66402592 @default.
- W2917021784 hasConcept C97931131 @default.
- W2917021784 hasConceptScore W2917021784C119857082 @default.
- W2917021784 hasConceptScore W2917021784C127413603 @default.
- W2917021784 hasConceptScore W2917021784C138885662 @default.
- W2917021784 hasConceptScore W2917021784C153180895 @default.
- W2917021784 hasConceptScore W2917021784C154945302 @default.
- W2917021784 hasConceptScore W2917021784C167966045 @default.
- W2917021784 hasConceptScore W2917021784C180706569 @default.
- W2917021784 hasConceptScore W2917021784C201995342 @default.
- W2917021784 hasConceptScore W2917021784C2776401178 @default.
- W2917021784 hasConceptScore W2917021784C2780451532 @default.
- W2917021784 hasConceptScore W2917021784C38652104 @default.
- W2917021784 hasConceptScore W2917021784C39890363 @default.
- W2917021784 hasConceptScore W2917021784C41008148 @default.
- W2917021784 hasConceptScore W2917021784C41895202 @default.
- W2917021784 hasConceptScore W2917021784C45942800 @default.
- W2917021784 hasConceptScore W2917021784C50644808 @default.
- W2917021784 hasConceptScore W2917021784C66402592 @default.
- W2917021784 hasConceptScore W2917021784C97931131 @default.
- W2917021784 hasLocation W29170217841 @default.
- W2917021784 hasOpenAccess W2917021784 @default.
- W2917021784 hasPrimaryLocation W29170217841 @default.
- W2917021784 hasRelatedWork W2036928248 @default.
- W2917021784 hasRelatedWork W233470793 @default.
- W2917021784 hasRelatedWork W2584479959 @default.
- W2917021784 hasRelatedWork W2594353911 @default.
- W2917021784 hasRelatedWork W2945536672 @default.
- W2917021784 hasRelatedWork W2947751188 @default.
- W2917021784 hasRelatedWork W2948695011 @default.
- W2917021784 hasRelatedWork W2963045978 @default.
- W2917021784 hasRelatedWork W2993958139 @default.
- W2917021784 hasRelatedWork W2999196618 @default.
- W2917021784 hasRelatedWork W3022562362 @default.
- W2917021784 hasRelatedWork W3039164994 @default.
- W2917021784 hasRelatedWork W3096937419 @default.
- W2917021784 hasRelatedWork W3113020622 @default.
- W2917021784 hasRelatedWork W3123838614 @default.
- W2917021784 hasRelatedWork W3158737092 @default.
- W2917021784 hasRelatedWork W3179325884 @default.
- W2917021784 hasRelatedWork W3200530698 @default.
- W2917021784 hasRelatedWork W46826290 @default.
- W2917021784 hasRelatedWork W2343000773 @default.
- W2917021784 isParatext "false" @default.
- W2917021784 isRetracted "false" @default.
- W2917021784 magId "2917021784" @default.
- W2917021784 workType "article" @default.