Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917036911> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2917036911 abstract "The speed of technology change is faster now compared to the past ten to fifteen years. It changes the way people live and force them to use the latest devices to match with the speed. In communication perspectives nowadays, use of electronic mail (e-mail) for people who want to communicate with friends, companies or even the universities cannot be avoided. This makes it to be the most targeted by the spammer and hackers and other bad people who want to get the benefit by sending spam emails. The report shows that the amount of emails sent through the internet in a day can be more than 10 billion among these 45% are spams. The amount is not constant as sometimes it goes higher than what is noted here. This indicates clearly the magnitude of the problem and calls for the need for more efforts to be applied to reduce this amount and also minimize the effects from the spam messages. Various measures have been taken to eliminate this problem. Once people used social methods, that is legislative means of control and now they are using technological methods which are more effective and timely in catching spams as these work by analyzing the messages content. In this paper we compare the performance of machine learning algorithms by doing the experiment for testing English language dataset, Swahili language dataset individual and combined two dataset to form one, and results from combined dataset compared them with the Gmail classifier. The classifiers which the researcher used are Naive Bayes (NB), Sequential Minimal Optimization (SMO) and k-Nearest Neighbour (k-NN). The results for combined dataset shows that SMO classifier lead the others by achieve 98.60% of accuracy, followed by k-NN classifier which has 97.20% accuracy, and Naive Bayes classifier has 92.89% accuracy. From this result the researcher concludes that SMO classifier can work better in dataset that combined English and Swahili languages. In English dataset shows that SMO classifier leads other algorism, it achieved 97.51% of accuracy, followed by k-NN with average accuracy of 93.52% and the last but also good accuracy is Naive Bayes that come with 87.78%. Swahili dataset Naive Bayes lead others by getting 99.12% accuracy followed by SMO which has 98.69% and the last was k-NN which has 98.47%." @default.
- W2917036911 created "2019-03-02" @default.
- W2917036911 creator A5046908226 @default.
- W2917036911 date "2018-03-01" @default.
- W2917036911 modified "2023-09-23" @default.
- W2917036911 title "A COMPARISON OF MACHINE LEARNING TECHNIQUES: E-MAIL SPAM FILTERING FROM COMBINED SWAHILI AND ENGLISH EMAIL MESSAGES" @default.
- W2917036911 cites W1588772606 @default.
- W2917036911 cites W1873332500 @default.
- W2917036911 cites W1965398296 @default.
- W2917036911 cites W2027469568 @default.
- W2917036911 cites W2079973770 @default.
- W2917036911 cites W2083308811 @default.
- W2917036911 cites W2085302848 @default.
- W2917036911 cites W2096866608 @default.
- W2917036911 cites W2113465302 @default.
- W2917036911 cites W2114048520 @default.
- W2917036911 cites W2117144903 @default.
- W2917036911 cites W2118020653 @default.
- W2917036911 cites W2121142969 @default.
- W2917036911 cites W2149684865 @default.
- W2917036911 cites W2164641162 @default.
- W2917036911 cites W2166490929 @default.
- W2917036911 cites W2460396931 @default.
- W2917036911 cites W2562617836 @default.
- W2917036911 cites W2581309730 @default.
- W2917036911 cites W2729590976 @default.
- W2917036911 cites W2732999188 @default.
- W2917036911 cites W2979469769 @default.
- W2917036911 cites W3102372265 @default.
- W2917036911 cites W327991062 @default.
- W2917036911 hasPublicationYear "2018" @default.
- W2917036911 type Work @default.
- W2917036911 sameAs 2917036911 @default.
- W2917036911 citedByCount "0" @default.
- W2917036911 crossrefType "dissertation" @default.
- W2917036911 hasAuthorship W2917036911A5046908226 @default.
- W2917036911 hasConcept C108827166 @default.
- W2917036911 hasConcept C110875604 @default.
- W2917036911 hasConcept C119857082 @default.
- W2917036911 hasConcept C12267149 @default.
- W2917036911 hasConcept C127735637 @default.
- W2917036911 hasConcept C136764020 @default.
- W2917036911 hasConcept C138885662 @default.
- W2917036911 hasConcept C154945302 @default.
- W2917036911 hasConcept C157310412 @default.
- W2917036911 hasConcept C158955206 @default.
- W2917036911 hasConcept C20692236 @default.
- W2917036911 hasConcept C2779913364 @default.
- W2917036911 hasConcept C33923547 @default.
- W2917036911 hasConcept C41008148 @default.
- W2917036911 hasConcept C41895202 @default.
- W2917036911 hasConcept C52001869 @default.
- W2917036911 hasConcept C94375191 @default.
- W2917036911 hasConcept C95623464 @default.
- W2917036911 hasConceptScore W2917036911C108827166 @default.
- W2917036911 hasConceptScore W2917036911C110875604 @default.
- W2917036911 hasConceptScore W2917036911C119857082 @default.
- W2917036911 hasConceptScore W2917036911C12267149 @default.
- W2917036911 hasConceptScore W2917036911C127735637 @default.
- W2917036911 hasConceptScore W2917036911C136764020 @default.
- W2917036911 hasConceptScore W2917036911C138885662 @default.
- W2917036911 hasConceptScore W2917036911C154945302 @default.
- W2917036911 hasConceptScore W2917036911C157310412 @default.
- W2917036911 hasConceptScore W2917036911C158955206 @default.
- W2917036911 hasConceptScore W2917036911C20692236 @default.
- W2917036911 hasConceptScore W2917036911C2779913364 @default.
- W2917036911 hasConceptScore W2917036911C33923547 @default.
- W2917036911 hasConceptScore W2917036911C41008148 @default.
- W2917036911 hasConceptScore W2917036911C41895202 @default.
- W2917036911 hasConceptScore W2917036911C52001869 @default.
- W2917036911 hasConceptScore W2917036911C94375191 @default.
- W2917036911 hasConceptScore W2917036911C95623464 @default.
- W2917036911 hasLocation W29170369111 @default.
- W2917036911 hasOpenAccess W2917036911 @default.
- W2917036911 hasPrimaryLocation W29170369111 @default.
- W2917036911 hasRelatedWork W1484485089 @default.
- W2917036911 hasRelatedWork W2053639338 @default.
- W2917036911 hasRelatedWork W2106055402 @default.
- W2917036911 hasRelatedWork W2129744133 @default.
- W2917036911 hasRelatedWork W2132718725 @default.
- W2917036911 hasRelatedWork W2160042361 @default.
- W2917036911 hasRelatedWork W2340809277 @default.
- W2917036911 hasRelatedWork W2553238562 @default.
- W2917036911 hasRelatedWork W2780172607 @default.
- W2917036911 hasRelatedWork W2798968372 @default.
- W2917036911 hasRelatedWork W2804446374 @default.
- W2917036911 hasRelatedWork W2883808240 @default.
- W2917036911 hasRelatedWork W2914257537 @default.
- W2917036911 hasRelatedWork W2921150469 @default.
- W2917036911 hasRelatedWork W2985798559 @default.
- W2917036911 hasRelatedWork W3025570996 @default.
- W2917036911 hasRelatedWork W3036853918 @default.
- W2917036911 hasRelatedWork W3196178530 @default.
- W2917036911 hasRelatedWork W3198661893 @default.
- W2917036911 hasRelatedWork W3201250517 @default.
- W2917036911 isParatext "false" @default.
- W2917036911 isRetracted "false" @default.
- W2917036911 magId "2917036911" @default.
- W2917036911 workType "dissertation" @default.