Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917084773> ?p ?o ?g. }
- W2917084773 endingPage "929" @default.
- W2917084773 startingPage "929" @default.
- W2917084773 abstract "Data-driven fault detection and identification methods are important in large-scale chemical processes. However, some traditional methods often fail to show superior performance owing to the self-limitations and the characteristics of process data, such as nonlinearity, non-Gaussian distribution, and multi-operating mode. To cope with these issues, the k-NN (k-Nearest Neighbor) fault detection method and extensions have been developed in recent years. Nevertheless, these methods are primarily used for fault detection, and few papers can be found that examine fault identification. In this paper, in order to extract effective fault information, the relationship between various faults and abnormal variables is studied, and an accurate fault⁻symptom table is presented. Then, a novel fault identification method based on k-NN variable contribution and CNN data reconstruction theories is proposed. When there is an abnormality, a variable contribution plot method based on k-NN is used to calculate the contribution index of each variable, and the feasibility of this method is verified by contribution decomposition theory, which includes a feasibility analysis of a single abnormal variable and multiple abnormal variables. Furthermore, to identify all the faulty variables, a CNN (Center-based Nearest Neighbor) data reconstruction method is proposed; the variables that have the larger contribution indices can be reconstructed using the CNN reconstruction method in turn. The proposed search strategy can guarantee that all faulty variables are found in each sample. The reliability and validity of the proposed method are verified by a numerical example and the Continuous Stirred Tank Reactor system." @default.
- W2917084773 created "2019-03-02" @default.
- W2917084773 creator A5009488253 @default.
- W2917084773 creator A5032506269 @default.
- W2917084773 creator A5032663574 @default.
- W2917084773 creator A5040854034 @default.
- W2917084773 creator A5069801226 @default.
- W2917084773 date "2019-02-22" @default.
- W2917084773 modified "2023-10-05" @default.
- W2917084773 title "Fault Identification of Chemical Processes Based on k-NN Variable Contribution and CNN Data Reconstruction Methods" @default.
- W2917084773 cites W1789954849 @default.
- W2917084773 cites W195815859 @default.
- W2917084773 cites W1976972876 @default.
- W2917084773 cites W1978677160 @default.
- W2917084773 cites W1979357005 @default.
- W2917084773 cites W1990384678 @default.
- W2917084773 cites W2000858991 @default.
- W2917084773 cites W2002268936 @default.
- W2917084773 cites W2053224328 @default.
- W2917084773 cites W2060776628 @default.
- W2917084773 cites W2063255184 @default.
- W2917084773 cites W2076769400 @default.
- W2917084773 cites W2078980832 @default.
- W2917084773 cites W2095518865 @default.
- W2917084773 cites W2096166399 @default.
- W2917084773 cites W2097331024 @default.
- W2917084773 cites W2103110513 @default.
- W2917084773 cites W2149000900 @default.
- W2917084773 cites W2155844971 @default.
- W2917084773 cites W2157012916 @default.
- W2917084773 cites W2290117530 @default.
- W2917084773 cites W2322097696 @default.
- W2917084773 cites W2508552526 @default.
- W2917084773 cites W2538814338 @default.
- W2917084773 cites W2550729902 @default.
- W2917084773 cites W2558146987 @default.
- W2917084773 cites W2591591405 @default.
- W2917084773 cites W2759373267 @default.
- W2917084773 cites W2773374035 @default.
- W2917084773 cites W2792332216 @default.
- W2917084773 cites W2800571504 @default.
- W2917084773 cites W2806871482 @default.
- W2917084773 cites W2891605032 @default.
- W2917084773 doi "https://doi.org/10.3390/s19040929" @default.
- W2917084773 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6413088" @default.
- W2917084773 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30813310" @default.
- W2917084773 hasPublicationYear "2019" @default.
- W2917084773 type Work @default.
- W2917084773 sameAs 2917084773 @default.
- W2917084773 citedByCount "3" @default.
- W2917084773 countsByYear W29170847732019 @default.
- W2917084773 countsByYear W29170847732021 @default.
- W2917084773 countsByYear W29170847732023 @default.
- W2917084773 crossrefType "journal-article" @default.
- W2917084773 hasAuthorship W2917084773A5009488253 @default.
- W2917084773 hasAuthorship W2917084773A5032506269 @default.
- W2917084773 hasAuthorship W2917084773A5032663574 @default.
- W2917084773 hasAuthorship W2917084773A5040854034 @default.
- W2917084773 hasAuthorship W2917084773A5069801226 @default.
- W2917084773 hasBestOaLocation W29170847731 @default.
- W2917084773 hasConcept C11413529 @default.
- W2917084773 hasConcept C116834253 @default.
- W2917084773 hasConcept C121332964 @default.
- W2917084773 hasConcept C124101348 @default.
- W2917084773 hasConcept C127313418 @default.
- W2917084773 hasConcept C134306372 @default.
- W2917084773 hasConcept C152745839 @default.
- W2917084773 hasConcept C153180895 @default.
- W2917084773 hasConcept C154945302 @default.
- W2917084773 hasConcept C158622935 @default.
- W2917084773 hasConcept C163258240 @default.
- W2917084773 hasConcept C165205528 @default.
- W2917084773 hasConcept C172707124 @default.
- W2917084773 hasConcept C175551986 @default.
- W2917084773 hasConcept C182365436 @default.
- W2917084773 hasConcept C33923547 @default.
- W2917084773 hasConcept C41008148 @default.
- W2917084773 hasConcept C43214815 @default.
- W2917084773 hasConcept C59822182 @default.
- W2917084773 hasConcept C62520636 @default.
- W2917084773 hasConcept C86803240 @default.
- W2917084773 hasConceptScore W2917084773C11413529 @default.
- W2917084773 hasConceptScore W2917084773C116834253 @default.
- W2917084773 hasConceptScore W2917084773C121332964 @default.
- W2917084773 hasConceptScore W2917084773C124101348 @default.
- W2917084773 hasConceptScore W2917084773C127313418 @default.
- W2917084773 hasConceptScore W2917084773C134306372 @default.
- W2917084773 hasConceptScore W2917084773C152745839 @default.
- W2917084773 hasConceptScore W2917084773C153180895 @default.
- W2917084773 hasConceptScore W2917084773C154945302 @default.
- W2917084773 hasConceptScore W2917084773C158622935 @default.
- W2917084773 hasConceptScore W2917084773C163258240 @default.
- W2917084773 hasConceptScore W2917084773C165205528 @default.
- W2917084773 hasConceptScore W2917084773C172707124 @default.
- W2917084773 hasConceptScore W2917084773C175551986 @default.
- W2917084773 hasConceptScore W2917084773C182365436 @default.
- W2917084773 hasConceptScore W2917084773C33923547 @default.
- W2917084773 hasConceptScore W2917084773C41008148 @default.