Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917124249> ?p ?o ?g. }
- W2917124249 endingPage "2423" @default.
- W2917124249 startingPage "2414" @default.
- W2917124249 abstract "Translation of traumatic brain injury (TBI) research findings from bench to bedside involves aligning multi-species data across diverse data types including imaging and molecular biomarkers, histopathology, behavior, and functional outcomes. In this review we argue that TBI translation should be acknowledged for what it is: a problem of big data that can be addressed using modern data science approaches. We review the history of the term big data, tracing its origins in Internet technology as data that are big according to the 4Vs of volume, velocity, variety, veracity and discuss how the term has transitioned into the mainstream of biomedical research. We argue that the problem of TBI translation fundamentally centers around data variety and that solutions to this problem can be found in modern machine learning and other cutting-edge analytical approaches. Throughout our discussion we highlight the need to pull data from diverse sources including unpublished data (dark data) and long-tail data (small, specialty TBI datasets undergirding the published literature). We review a few early examples of published articles in both the pre-clinical and clinical TBI research literature to demonstrate how data reuse can drive new discoveries leading into translational therapies. Making TBI data resources more Findable, Accessible, Interoperable, and Reusable (FAIR) through better data stewardship has great potential to accelerate discovery and translation for the silent epidemic of TBI." @default.
- W2917124249 created "2019-03-02" @default.
- W2917124249 creator A5002370341 @default.
- W2917124249 creator A5019326045 @default.
- W2917124249 creator A5046803439 @default.
- W2917124249 creator A5060022521 @default.
- W2917124249 creator A5087351342 @default.
- W2917124249 date "2020-11-15" @default.
- W2917124249 modified "2023-09-26" @default.
- W2917124249 title "Data Dissemination: Shortening the Long Tail of Traumatic Brain Injury Dark Data" @default.
- W2917124249 cites W1491255615 @default.
- W2917124249 cites W1693122999 @default.
- W2917124249 cites W1750108536 @default.
- W2917124249 cites W1934249711 @default.
- W2917124249 cites W1966297423 @default.
- W2917124249 cites W1966439088 @default.
- W2917124249 cites W1971886502 @default.
- W2917124249 cites W1972303806 @default.
- W2917124249 cites W1982218215 @default.
- W2917124249 cites W1993740893 @default.
- W2917124249 cites W2002463857 @default.
- W2917124249 cites W2036964199 @default.
- W2917124249 cites W2039139807 @default.
- W2917124249 cites W2050800676 @default.
- W2917124249 cites W2060777758 @default.
- W2917124249 cites W2067208808 @default.
- W2917124249 cites W2073340827 @default.
- W2917124249 cites W2076823931 @default.
- W2917124249 cites W2080359489 @default.
- W2917124249 cites W2084396986 @default.
- W2917124249 cites W2086096185 @default.
- W2917124249 cites W2122908200 @default.
- W2917124249 cites W2126214917 @default.
- W2917124249 cites W2128332802 @default.
- W2917124249 cites W2129136587 @default.
- W2917124249 cites W2134705330 @default.
- W2917124249 cites W2134972630 @default.
- W2917124249 cites W2136462620 @default.
- W2917124249 cites W2144981148 @default.
- W2917124249 cites W2152652033 @default.
- W2917124249 cites W2164759539 @default.
- W2917124249 cites W2174595477 @default.
- W2917124249 cites W2174745877 @default.
- W2917124249 cites W2191030086 @default.
- W2917124249 cites W2191822779 @default.
- W2917124249 cites W2261714614 @default.
- W2917124249 cites W2277708352 @default.
- W2917124249 cites W2301165054 @default.
- W2917124249 cites W2302501749 @default.
- W2917124249 cites W2337575677 @default.
- W2917124249 cites W2413947359 @default.
- W2917124249 cites W2511930323 @default.
- W2917124249 cites W2512140018 @default.
- W2917124249 cites W2534952076 @default.
- W2917124249 cites W2535509010 @default.
- W2917124249 cites W2580495024 @default.
- W2917124249 cites W2587881276 @default.
- W2917124249 cites W2588765690 @default.
- W2917124249 cites W2589530025 @default.
- W2917124249 cites W2594552501 @default.
- W2917124249 cites W2594748224 @default.
- W2917124249 cites W2597928394 @default.
- W2917124249 cites W2598023782 @default.
- W2917124249 cites W2612343160 @default.
- W2917124249 cites W2618648632 @default.
- W2917124249 cites W2623888858 @default.
- W2917124249 cites W2736817282 @default.
- W2917124249 cites W2743760688 @default.
- W2917124249 cites W2752521545 @default.
- W2917124249 cites W2761453842 @default.
- W2917124249 cites W2762274139 @default.
- W2917124249 cites W2767813783 @default.
- W2917124249 cites W2768441941 @default.
- W2917124249 cites W2773486030 @default.
- W2917124249 cites W2775197944 @default.
- W2917124249 cites W2789259028 @default.
- W2917124249 cites W2790916396 @default.
- W2917124249 cites W2792736771 @default.
- W2917124249 cites W2799544839 @default.
- W2917124249 cites W2805293813 @default.
- W2917124249 cites W2886296499 @default.
- W2917124249 cites W2887739275 @default.
- W2917124249 cites W2898708924 @default.
- W2917124249 cites W2973670627 @default.
- W2917124249 cites W4206713405 @default.
- W2917124249 cites W4210765235 @default.
- W2917124249 cites W4241607140 @default.
- W2917124249 cites W4241645964 @default.
- W2917124249 doi "https://doi.org/10.1089/neu.2018.6192" @default.
- W2917124249 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7698976" @default.
- W2917124249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30794049" @default.
- W2917124249 hasPublicationYear "2020" @default.
- W2917124249 type Work @default.
- W2917124249 sameAs 2917124249 @default.
- W2917124249 citedByCount "12" @default.
- W2917124249 countsByYear W29171242492020 @default.
- W2917124249 countsByYear W29171242492021 @default.
- W2917124249 countsByYear W29171242492022 @default.