Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917129675> ?p ?o ?g. }
- W2917129675 endingPage "982" @default.
- W2917129675 startingPage "973" @default.
- W2917129675 abstract "Endocrine disruption (ED) has become a serious public health issue and also poses a significant threat to the ecosystem. Due to complex mechanisms of ED, traditional in silico models focusing on only one mechanism are insufficient for detection of endocrine disrupting chemicals (EDCs), let alone offering an overview of possible action mechanisms for a known EDC. To remove these limitations, in this study both single-label and multilabel models were constructed across six ED targets, namely, AR (androgen receptor), ER (estrogen receptor alpha), TR (thyroid receptor), GR (glucocorticoid receptor), PPARg (peroxisome proliferator-activated receptor gamma), and aromatase. Two machine learning methods were used to build the single-label models, with multiple random under-sampling combining voting classification to overcome the challenge of data imbalance. Four methods were explored to construct the multilabel models that can predict the interaction of one EDC against multiple targets simultaneously. The single-label models of all the six targets have achieved reasonable performance with balanced accuracy (BA) values from 0.742 to 0.816. Each top single-label model was then joined to predict the multilabel test set with BA values from 0.586 to 0.711. The multilabel models could offer a significant boost over the single-label baselines with BA values for the multilabel test set from 0.659 to 0.832. Therefore, we concluded that single-label models could be employed for identification of potential EDCs, while multilabel ones are preferable for prediction of possible mechanisms of known EDCs." @default.
- W2917129675 created "2019-03-02" @default.
- W2917129675 creator A5008878615 @default.
- W2917129675 creator A5026143643 @default.
- W2917129675 creator A5052022256 @default.
- W2917129675 creator A5056744633 @default.
- W2917129675 creator A5063428886 @default.
- W2917129675 date "2019-02-26" @default.
- W2917129675 modified "2023-10-16" @default.
- W2917129675 title "<i>In Silico</i> Prediction of Endocrine Disrupting Chemicals Using Single-Label and Multilabel Models" @default.
- W2917129675 cites W1145254893 @default.
- W2917129675 cites W1488838306 @default.
- W2917129675 cites W1491576965 @default.
- W2917129675 cites W1882080010 @default.
- W2917129675 cites W1988195734 @default.
- W2917129675 cites W1996660089 @default.
- W2917129675 cites W2018711002 @default.
- W2917129675 cites W2032469875 @default.
- W2917129675 cites W2060862064 @default.
- W2917129675 cites W2061453990 @default.
- W2917129675 cites W2070230278 @default.
- W2917129675 cites W2080355854 @default.
- W2917129675 cites W2083497194 @default.
- W2917129675 cites W2104167780 @default.
- W2917129675 cites W2106884742 @default.
- W2917129675 cites W2108241608 @default.
- W2917129675 cites W2118225084 @default.
- W2917129675 cites W2122025333 @default.
- W2917129675 cites W2123704408 @default.
- W2917129675 cites W2134783572 @default.
- W2917129675 cites W2140321480 @default.
- W2917129675 cites W2141508601 @default.
- W2917129675 cites W2156935079 @default.
- W2917129675 cites W2159887157 @default.
- W2917129675 cites W2160337287 @default.
- W2917129675 cites W2167671769 @default.
- W2917129675 cites W2189911347 @default.
- W2917129675 cites W2190800365 @default.
- W2917129675 cites W2266978829 @default.
- W2917129675 cites W2288366709 @default.
- W2917129675 cites W2346573172 @default.
- W2917129675 cites W2394108223 @default.
- W2917129675 cites W2411584645 @default.
- W2917129675 cites W2460225311 @default.
- W2917129675 cites W2532454894 @default.
- W2917129675 cites W2608270353 @default.
- W2917129675 cites W2766878249 @default.
- W2917129675 cites W2774974037 @default.
- W2917129675 cites W2914484650 @default.
- W2917129675 cites W2916534270 @default.
- W2917129675 cites W66588809 @default.
- W2917129675 doi "https://doi.org/10.1021/acs.jcim.8b00551" @default.
- W2917129675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30807141" @default.
- W2917129675 hasPublicationYear "2019" @default.
- W2917129675 type Work @default.
- W2917129675 sameAs 2917129675 @default.
- W2917129675 citedByCount "21" @default.
- W2917129675 countsByYear W29171296752019 @default.
- W2917129675 countsByYear W29171296752020 @default.
- W2917129675 countsByYear W29171296752021 @default.
- W2917129675 countsByYear W29171296752022 @default.
- W2917129675 countsByYear W29171296752023 @default.
- W2917129675 crossrefType "journal-article" @default.
- W2917129675 hasAuthorship W2917129675A5008878615 @default.
- W2917129675 hasAuthorship W2917129675A5026143643 @default.
- W2917129675 hasAuthorship W2917129675A5052022256 @default.
- W2917129675 hasAuthorship W2917129675A5056744633 @default.
- W2917129675 hasAuthorship W2917129675A5063428886 @default.
- W2917129675 hasConcept C104317684 @default.
- W2917129675 hasConcept C119857082 @default.
- W2917129675 hasConcept C121608353 @default.
- W2917129675 hasConcept C148483581 @default.
- W2917129675 hasConcept C154945302 @default.
- W2917129675 hasConcept C169903167 @default.
- W2917129675 hasConcept C172313692 @default.
- W2917129675 hasConcept C177264268 @default.
- W2917129675 hasConcept C185592680 @default.
- W2917129675 hasConcept C199360897 @default.
- W2917129675 hasConcept C2775905019 @default.
- W2917129675 hasConcept C41008148 @default.
- W2917129675 hasConcept C530470458 @default.
- W2917129675 hasConcept C54355233 @default.
- W2917129675 hasConcept C55493867 @default.
- W2917129675 hasConcept C84606932 @default.
- W2917129675 hasConcept C86803240 @default.
- W2917129675 hasConceptScore W2917129675C104317684 @default.
- W2917129675 hasConceptScore W2917129675C119857082 @default.
- W2917129675 hasConceptScore W2917129675C121608353 @default.
- W2917129675 hasConceptScore W2917129675C148483581 @default.
- W2917129675 hasConceptScore W2917129675C154945302 @default.
- W2917129675 hasConceptScore W2917129675C169903167 @default.
- W2917129675 hasConceptScore W2917129675C172313692 @default.
- W2917129675 hasConceptScore W2917129675C177264268 @default.
- W2917129675 hasConceptScore W2917129675C185592680 @default.
- W2917129675 hasConceptScore W2917129675C199360897 @default.
- W2917129675 hasConceptScore W2917129675C2775905019 @default.
- W2917129675 hasConceptScore W2917129675C41008148 @default.
- W2917129675 hasConceptScore W2917129675C530470458 @default.