Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917175536> ?p ?o ?g. }
- W2917175536 abstract "In this study, we explored how various preprocessing approaches can be employed to enhance the capability of dental CBCT to accurately estimate trabecular bone microarchitectural parameters. In total, 30 bovine vertebrae cancellous bone specimens were used for in study. Voxel resolution 18-μm micro-computed tomography (micro-CT) and 100-μm dental CBCT were used to scan each specimen. Micro-CT images were used to calculate trabecular bone microarchitectural parameters; the results were set as the gold standard. Subsequently, before the dental CBCT images were converted into binary images to calculate trabecular bone microarchitectural parameters, three preprocessing approaches were used to process the dental CBCT images. For Group 1, no preprocessing approach was applied. For Group 2, images were sharpened and despeckable noises were removed. For Group 3, the function of local thresholding was added to Group 2 to form Group 3. For Group 4, the air pixels was removed from Group 3 to form Group 4. Subsequently, all images were imported into a software package to estimate trabecular bone microarchitectural parameters (bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), and trabecular separation (TbSp)). Finally, a paired t-test and a Pearson correlation test were performed to compare the capability of micro-CT with the capability of dental CBCT for estimating trabecular bone microarchitectural parameters. Regardless of whether dental CBCT images underwent image preprocessing (Groups 1 to 4), the four trabecular bone microarchitectural parameters measured using dental CBCT images were significantly different from those measured using micro-CT images. However, after three image preprocessing approaches were applied to the dental CBCT images (Group 4), the BV/TV obtained using dental CBCT was highly positively correlated with that obtained using micro-CT (r = 0.87, p < 0.001); the correlation coefficient was greater than that of Group 1 (r = −0.15, p = 0.412), Group 2 (r = 0.16, p = 0.386), and Group 3 (r = 0.47, p = 0.006). After dental CBCT images underwent image preprocessing, the efficacy of using dental CBCT for estimating TbN and TbSp was enhanced. Image preprocessing approaches can be used to enhance the efficacy of using dental CBCT for predicting trabecular bone microarchitectural parameters." @default.
- W2917175536 created "2019-03-02" @default.
- W2917175536 creator A5010085450 @default.
- W2917175536 creator A5020645097 @default.
- W2917175536 creator A5049438066 @default.
- W2917175536 creator A5054356207 @default.
- W2917175536 creator A5072342276 @default.
- W2917175536 creator A5085259440 @default.
- W2917175536 date "2019-01-23" @default.
- W2917175536 modified "2023-10-18" @default.
- W2917175536 title "Improving the prediction of the trabecular bone microarchitectural parameters using dental cone-beam computed tomography" @default.
- W2917175536 cites W120215929 @default.
- W2917175536 cites W1909162429 @default.
- W2917175536 cites W1921008419 @default.
- W2917175536 cites W1963966569 @default.
- W2917175536 cites W1964581089 @default.
- W2917175536 cites W1970057776 @default.
- W2917175536 cites W1994218769 @default.
- W2917175536 cites W1994449259 @default.
- W2917175536 cites W2021422668 @default.
- W2917175536 cites W2024301032 @default.
- W2917175536 cites W2030109259 @default.
- W2917175536 cites W2040535822 @default.
- W2917175536 cites W2040873725 @default.
- W2917175536 cites W2059444182 @default.
- W2917175536 cites W2062111740 @default.
- W2917175536 cites W2066749771 @default.
- W2917175536 cites W2077932608 @default.
- W2917175536 cites W2086859574 @default.
- W2917175536 cites W2089111613 @default.
- W2917175536 cites W2093070647 @default.
- W2917175536 cites W2099616685 @default.
- W2917175536 cites W2109318432 @default.
- W2917175536 cites W2113073376 @default.
- W2917175536 cites W2115523847 @default.
- W2917175536 cites W2115820411 @default.
- W2917175536 cites W2122938694 @default.
- W2917175536 cites W2125862310 @default.
- W2917175536 cites W2128712656 @default.
- W2917175536 cites W2135372180 @default.
- W2917175536 cites W2162781293 @default.
- W2917175536 cites W2188185752 @default.
- W2917175536 cites W2201281358 @default.
- W2917175536 cites W2344278422 @default.
- W2917175536 cites W2507443642 @default.
- W2917175536 cites W2569097302 @default.
- W2917175536 cites W2578306685 @default.
- W2917175536 cites W2781888679 @default.
- W2917175536 doi "https://doi.org/10.1186/s12880-019-0313-9" @default.
- W2917175536 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6343305" @default.
- W2917175536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30674282" @default.
- W2917175536 hasPublicationYear "2019" @default.
- W2917175536 type Work @default.
- W2917175536 sameAs 2917175536 @default.
- W2917175536 citedByCount "8" @default.
- W2917175536 countsByYear W29171755362020 @default.
- W2917175536 countsByYear W29171755362021 @default.
- W2917175536 countsByYear W29171755362022 @default.
- W2917175536 countsByYear W29171755362023 @default.
- W2917175536 crossrefType "journal-article" @default.
- W2917175536 hasAuthorship W2917175536A5010085450 @default.
- W2917175536 hasAuthorship W2917175536A5020645097 @default.
- W2917175536 hasAuthorship W2917175536A5049438066 @default.
- W2917175536 hasAuthorship W2917175536A5054356207 @default.
- W2917175536 hasAuthorship W2917175536A5072342276 @default.
- W2917175536 hasAuthorship W2917175536A5085259440 @default.
- W2917175536 hasBestOaLocation W29171755361 @default.
- W2917175536 hasConcept C105702510 @default.
- W2917175536 hasConcept C126838900 @default.
- W2917175536 hasConcept C136229726 @default.
- W2917175536 hasConcept C142724271 @default.
- W2917175536 hasConcept C154945302 @default.
- W2917175536 hasConcept C160633673 @default.
- W2917175536 hasConcept C2776350087 @default.
- W2917175536 hasConcept C2776541429 @default.
- W2917175536 hasConcept C2779813781 @default.
- W2917175536 hasConcept C2989005 @default.
- W2917175536 hasConcept C3018268312 @default.
- W2917175536 hasConcept C41008148 @default.
- W2917175536 hasConcept C54170458 @default.
- W2917175536 hasConcept C544519230 @default.
- W2917175536 hasConcept C71924100 @default.
- W2917175536 hasConceptScore W2917175536C105702510 @default.
- W2917175536 hasConceptScore W2917175536C126838900 @default.
- W2917175536 hasConceptScore W2917175536C136229726 @default.
- W2917175536 hasConceptScore W2917175536C142724271 @default.
- W2917175536 hasConceptScore W2917175536C154945302 @default.
- W2917175536 hasConceptScore W2917175536C160633673 @default.
- W2917175536 hasConceptScore W2917175536C2776350087 @default.
- W2917175536 hasConceptScore W2917175536C2776541429 @default.
- W2917175536 hasConceptScore W2917175536C2779813781 @default.
- W2917175536 hasConceptScore W2917175536C2989005 @default.
- W2917175536 hasConceptScore W2917175536C3018268312 @default.
- W2917175536 hasConceptScore W2917175536C41008148 @default.
- W2917175536 hasConceptScore W2917175536C54170458 @default.
- W2917175536 hasConceptScore W2917175536C544519230 @default.
- W2917175536 hasConceptScore W2917175536C71924100 @default.
- W2917175536 hasFunder F4320310848 @default.
- W2917175536 hasFunder F4320324301 @default.
- W2917175536 hasIssue "1" @default.