Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917287509> ?p ?o ?g. }
- W2917287509 endingPage "42" @default.
- W2917287509 startingPage "21" @default.
- W2917287509 abstract "Abstract We investigate the interaction of edge dislocation with θ′ phase in aluminum matrix using atomistic simulations. The thickness of θ′ phase is chosen to be constant of 2.2 nm and the diameter is varied in range from 3 to 10 nm. It is shown that first interactions of dislocation with θ′ phase occur according to the mechanism of Orowan loop formation around the obstacle. In this case, the cross-slip processes, the formation of dislocation jogs in adjacent slip plane and the emission of vacancies upon the return of a segment to the initial slip plane are possible. During these interactions, the material of θ′ phase is subjected to high shear stresses up to 3 GPa in a layer of 2 nm thickness. Such a high stress leads to a θ′ phase cutting on the third or fourth overcoming of the obstacle by dislocation. A study is carried out of the dependence of the average stress in the system on the size of inclusion and the distance between inclusions. It is shown that an increase in the diameter of inclusion causes an increase in the average stresses in the system in proportion close to the square root of the diameter of the inclusion. Increasing the distance between inclusions causes the inversely proportional reduction of the average stress. The conducted investigation of the strain rate sensitivity showed that in the case of high shear rates, the average stresses in the system continuously increase that does not allow applying the time averaging procedure to them. The described effect is also registered in the case of pure aluminum. The existence of two regions on the temperature dependence of the average stresses in the system on the strain rate in the case of θ′ phase, previously described by Yanilkin et al. (2014) for the Guinier-Prestone zones, is confirmed. In the case of high strain rates, heating of the system leads to a decrease in the dislocation velocity, while at low strain rates the dislocation velocity increases with increasing temperature at a fixed shear rate. An interesting result obtained with long-term molecular-dynamics simulations when the tracing time is up to 2 ns, there is a tendency to reduce the average stress in the system through time. This result can be explained by destruction of the structure and form of θ’ phase. The law of motion of a dislocation in the approximation of the constancy of θ′ phase properties is proposed to describe the response of the system to shear deformation. The model contains a dislocation mass, phonon friction, and takes into account the effect of the inclusion of θ’ phase through an increase in the elastic energy of a dislocation during the formation of the Orowan loop around an obstacle." @default.
- W2917287509 created "2019-03-02" @default.
- W2917287509 creator A5052156099 @default.
- W2917287509 creator A5064698442 @default.
- W2917287509 date "2019-08-01" @default.
- W2917287509 modified "2023-09-24" @default.
- W2917287509 title "Dislocation dynamics in aluminum containing θ’ phase: Atomistic simulation and continuum modeling" @default.
- W2917287509 cites W1602349742 @default.
- W2917287509 cites W1965082416 @default.
- W2917287509 cites W1968149407 @default.
- W2917287509 cites W1968336455 @default.
- W2917287509 cites W1973811263 @default.
- W2917287509 cites W1988040927 @default.
- W2917287509 cites W1990164070 @default.
- W2917287509 cites W1995053343 @default.
- W2917287509 cites W1995395300 @default.
- W2917287509 cites W1995502142 @default.
- W2917287509 cites W1998506710 @default.
- W2917287509 cites W2007374489 @default.
- W2917287509 cites W2013593650 @default.
- W2917287509 cites W2017110867 @default.
- W2917287509 cites W2018205620 @default.
- W2917287509 cites W2018347659 @default.
- W2917287509 cites W2025006922 @default.
- W2917287509 cites W2035266068 @default.
- W2917287509 cites W2037339003 @default.
- W2917287509 cites W2037828257 @default.
- W2917287509 cites W2038754341 @default.
- W2917287509 cites W2046324553 @default.
- W2917287509 cites W2047968138 @default.
- W2917287509 cites W2049818853 @default.
- W2917287509 cites W2056359946 @default.
- W2917287509 cites W2057720585 @default.
- W2917287509 cites W2060736767 @default.
- W2917287509 cites W2067358965 @default.
- W2917287509 cites W2067657177 @default.
- W2917287509 cites W2069483681 @default.
- W2917287509 cites W2069944400 @default.
- W2917287509 cites W2072408033 @default.
- W2917287509 cites W2082819073 @default.
- W2917287509 cites W2087783194 @default.
- W2917287509 cites W2092114429 @default.
- W2917287509 cites W2092177052 @default.
- W2917287509 cites W2093741980 @default.
- W2917287509 cites W2149057715 @default.
- W2917287509 cites W2150492737 @default.
- W2917287509 cites W2168363974 @default.
- W2917287509 cites W2183964799 @default.
- W2917287509 cites W2239749925 @default.
- W2917287509 cites W2285290932 @default.
- W2917287509 cites W2394817216 @default.
- W2917287509 cites W2522726069 @default.
- W2917287509 cites W2550141087 @default.
- W2917287509 cites W2555508382 @default.
- W2917287509 cites W2561241104 @default.
- W2917287509 cites W2586515980 @default.
- W2917287509 cites W2595422937 @default.
- W2917287509 cites W2598718716 @default.
- W2917287509 cites W2611171829 @default.
- W2917287509 cites W2617077457 @default.
- W2917287509 cites W2620117279 @default.
- W2917287509 cites W2744789247 @default.
- W2917287509 cites W2763229215 @default.
- W2917287509 cites W2767288185 @default.
- W2917287509 cites W2767388245 @default.
- W2917287509 cites W2767605787 @default.
- W2917287509 cites W2794300266 @default.
- W2917287509 cites W2803294929 @default.
- W2917287509 cites W2810640999 @default.
- W2917287509 cites W2855329601 @default.
- W2917287509 cites W2883393911 @default.
- W2917287509 cites W2884919442 @default.
- W2917287509 cites W2891555408 @default.
- W2917287509 cites W2897307770 @default.
- W2917287509 cites W4244866278 @default.
- W2917287509 doi "https://doi.org/10.1016/j.ijplas.2019.02.010" @default.
- W2917287509 hasPublicationYear "2019" @default.
- W2917287509 type Work @default.
- W2917287509 sameAs 2917287509 @default.
- W2917287509 citedByCount "45" @default.
- W2917287509 countsByYear W29172875092019 @default.
- W2917287509 countsByYear W29172875092020 @default.
- W2917287509 countsByYear W29172875092021 @default.
- W2917287509 countsByYear W29172875092022 @default.
- W2917287509 countsByYear W29172875092023 @default.
- W2917287509 crossrefType "journal-article" @default.
- W2917287509 hasAuthorship W2917287509A5052156099 @default.
- W2917287509 hasAuthorship W2917287509A5064698442 @default.
- W2917287509 hasConcept C121332964 @default.
- W2917287509 hasConcept C121864883 @default.
- W2917287509 hasConcept C145912823 @default.
- W2917287509 hasConcept C159122135 @default.
- W2917287509 hasConcept C159985019 @default.
- W2917287509 hasConcept C192562407 @default.
- W2917287509 hasConcept C24890656 @default.
- W2917287509 hasConcept C513153333 @default.
- W2917287509 hasConcept C57879066 @default.
- W2917287509 hasConcept C59593255 @default.