Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917290997> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2917290997 abstract "To achieve ultra-low latency mobile networking, recent efforts to integrate virtual cell with open-loop communications and proactive network association suggest the facilitation of new technological paradigm, but the interference from different co-locating virtual cells is hard to handle. Open-loop transmissions make beam-forming/interference alignment infeasible due to the need of channel state information feedback. Multiuser detection (MUD) is therefore employed to address the downlink interference. We note that the bit error rate (BER) of maximum-likelihood MUD (ML-MUD) is sensitive to the modulation of the interference. As the interferer uses low-order modulation, the BER of desired signal can approach the ideal case without interference. But if the interferer adopts high-order modulation, the resultant BER is significantly degraded. Our study shows that, such modulation sensitivity can be eased by the multi-antenna technique. We also propose two methods to reduce the notorious computational complexity of MUD, particularly involving higher order modulations. The first scheme is termed as the reduced-computation ML-MUD (R-ML-MUD) that exploits the characteristic of downlink to shrink the ML solution space, consequently leading to lower detection complexity. The second scheme is a new projection receiver, called generalized linear minimum mean square error equalizer, resulting in notable signal-to-noise ratio gain over the conventional projection method. The simulation results indicate that the proposed schemes and their integration can achieve satisfactory BER performance." @default.
- W2917290997 created "2019-03-02" @default.
- W2917290997 creator A5022325942 @default.
- W2917290997 creator A5076285652 @default.
- W2917290997 date "2019-05-01" @default.
- W2917290997 modified "2023-10-03" @default.
- W2917290997 title "Downlink Multiuser Detection in the Virtual Cell-Based Ultra-Low Latency Vehicular Networks" @default.
- W2917290997 doi "https://doi.org/10.1109/tvt.2019.2901266" @default.
- W2917290997 hasPublicationYear "2019" @default.
- W2917290997 type Work @default.
- W2917290997 sameAs 2917290997 @default.
- W2917290997 citedByCount "8" @default.
- W2917290997 countsByYear W29172909972020 @default.
- W2917290997 countsByYear W29172909972021 @default.
- W2917290997 countsByYear W29172909972022 @default.
- W2917290997 countsByYear W29172909972023 @default.
- W2917290997 crossrefType "journal-article" @default.
- W2917290997 hasAuthorship W2917290997A5022325942 @default.
- W2917290997 hasAuthorship W2917290997A5076285652 @default.
- W2917290997 hasConcept C11413529 @default.
- W2917290997 hasConcept C121332964 @default.
- W2917290997 hasConcept C123079801 @default.
- W2917290997 hasConcept C127162648 @default.
- W2917290997 hasConcept C127413603 @default.
- W2917290997 hasConcept C138660444 @default.
- W2917290997 hasConcept C179799912 @default.
- W2917290997 hasConcept C24326235 @default.
- W2917290997 hasConcept C24890656 @default.
- W2917290997 hasConcept C2777104032 @default.
- W2917290997 hasConcept C31258907 @default.
- W2917290997 hasConcept C32022120 @default.
- W2917290997 hasConcept C41008148 @default.
- W2917290997 hasConcept C47696715 @default.
- W2917290997 hasConcept C56296756 @default.
- W2917290997 hasConcept C79403827 @default.
- W2917290997 hasConcept C83204339 @default.
- W2917290997 hasConceptScore W2917290997C11413529 @default.
- W2917290997 hasConceptScore W2917290997C121332964 @default.
- W2917290997 hasConceptScore W2917290997C123079801 @default.
- W2917290997 hasConceptScore W2917290997C127162648 @default.
- W2917290997 hasConceptScore W2917290997C127413603 @default.
- W2917290997 hasConceptScore W2917290997C138660444 @default.
- W2917290997 hasConceptScore W2917290997C179799912 @default.
- W2917290997 hasConceptScore W2917290997C24326235 @default.
- W2917290997 hasConceptScore W2917290997C24890656 @default.
- W2917290997 hasConceptScore W2917290997C2777104032 @default.
- W2917290997 hasConceptScore W2917290997C31258907 @default.
- W2917290997 hasConceptScore W2917290997C32022120 @default.
- W2917290997 hasConceptScore W2917290997C41008148 @default.
- W2917290997 hasConceptScore W2917290997C47696715 @default.
- W2917290997 hasConceptScore W2917290997C56296756 @default.
- W2917290997 hasConceptScore W2917290997C79403827 @default.
- W2917290997 hasConceptScore W2917290997C83204339 @default.
- W2917290997 hasLocation W29172909971 @default.
- W2917290997 hasOpenAccess W2917290997 @default.
- W2917290997 hasPrimaryLocation W29172909971 @default.
- W2917290997 hasRelatedWork W1613269072 @default.
- W2917290997 hasRelatedWork W2023370966 @default.
- W2917290997 hasRelatedWork W2030987772 @default.
- W2917290997 hasRelatedWork W2043038419 @default.
- W2917290997 hasRelatedWork W2044967617 @default.
- W2917290997 hasRelatedWork W2094481635 @default.
- W2917290997 hasRelatedWork W2104271516 @default.
- W2917290997 hasRelatedWork W2125423890 @default.
- W2917290997 hasRelatedWork W2138123625 @default.
- W2917290997 hasRelatedWork W2139335391 @default.
- W2917290997 hasRelatedWork W2147564239 @default.
- W2917290997 hasRelatedWork W2148883411 @default.
- W2917290997 hasRelatedWork W2160396208 @default.
- W2917290997 hasRelatedWork W2161818290 @default.
- W2917290997 hasRelatedWork W2162601002 @default.
- W2917290997 hasRelatedWork W2170080106 @default.
- W2917290997 hasRelatedWork W2188963837 @default.
- W2917290997 hasRelatedWork W2270656490 @default.
- W2917290997 hasRelatedWork W2770800918 @default.
- W2917290997 hasRelatedWork W3161984042 @default.
- W2917290997 isParatext "false" @default.
- W2917290997 isRetracted "false" @default.
- W2917290997 magId "2917290997" @default.
- W2917290997 workType "article" @default.