Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917294158> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2917294158 endingPage "249" @default.
- W2917294158 startingPage "237" @default.
- W2917294158 abstract "This study proposes an Island Parallel Evolutionary Extreme Learning Machine algorithm (IPE-ELM) for the well-known data classification problem. The ELM is a fast and efficient machine learning technique with its single-hidden layer feed-forward neural network (SLFN). High prediction accuracy and learning speed of the ELM make it an elegant tool for the fitness calculation process of the evolutionary algorithms. The IPE-ELM algorithm combines the evolutionary genetic algorithms (for feature selection), ELM machine learning technique (for prediction accuracy calculation), parallel computation (for faster fitness evaluation), and parameter tuning (activation function selection and the number of hidden neurons) for the solution of this important problem. Each ELM that runs at a different processor selects one of four different activation functions (Sine, Cosine, Sigmoid and Hyperbolic Tangent) and uses a randomized number of hidden neurons to achieve higher prediction accuracy. The proposed algorithm provides high quality results with its (near)-linear scalability behavior. The IPE-ELM algorithm is compared with state-of-the-art data classification algorithms by using UCI benchmark datasets and significant improvements are reported in terms of prediction accuracy with reasonable execution times. The scalable IPE-ELM algorithm can be reported as the first island parallel evolutionary classification algorithm with its high prediction accuracy results that outperforms state-of-the-art algorithms in literature." @default.
- W2917294158 created "2019-03-02" @default.
- W2917294158 creator A5027110712 @default.
- W2917294158 creator A5073624493 @default.
- W2917294158 date "2019-04-01" @default.
- W2917294158 modified "2023-09-25" @default.
- W2917294158 title "Evolutionary parallel extreme learning machines for the data classification problem" @default.
- W2917294158 cites W1439842103 @default.
- W2917294158 cites W1546047739 @default.
- W2917294158 cites W1833977909 @default.
- W2917294158 cites W1968130749 @default.
- W2917294158 cites W1993717606 @default.
- W2917294158 cites W2026131661 @default.
- W2917294158 cites W2029097756 @default.
- W2917294158 cites W2034338161 @default.
- W2917294158 cites W2035026907 @default.
- W2917294158 cites W2040604977 @default.
- W2917294158 cites W2043009412 @default.
- W2917294158 cites W2043589370 @default.
- W2917294158 cites W2045489657 @default.
- W2917294158 cites W2050399271 @default.
- W2917294158 cites W2052842899 @default.
- W2917294158 cites W2053321925 @default.
- W2917294158 cites W2053410046 @default.
- W2917294158 cites W2056168656 @default.
- W2917294158 cites W2086208228 @default.
- W2917294158 cites W2109094355 @default.
- W2917294158 cites W2111072639 @default.
- W2917294158 cites W2113242816 @default.
- W2917294158 cites W2121971770 @default.
- W2917294158 cites W2415375246 @default.
- W2917294158 cites W2518949139 @default.
- W2917294158 cites W2586600089 @default.
- W2917294158 cites W2792872327 @default.
- W2917294158 cites W2801670208 @default.
- W2917294158 cites W2888329226 @default.
- W2917294158 cites W4212817109 @default.
- W2917294158 cites W4249247926 @default.
- W2917294158 doi "https://doi.org/10.1016/j.cie.2019.02.024" @default.
- W2917294158 hasPublicationYear "2019" @default.
- W2917294158 type Work @default.
- W2917294158 sameAs 2917294158 @default.
- W2917294158 citedByCount "19" @default.
- W2917294158 countsByYear W29172941582019 @default.
- W2917294158 countsByYear W29172941582020 @default.
- W2917294158 countsByYear W29172941582021 @default.
- W2917294158 countsByYear W29172941582022 @default.
- W2917294158 countsByYear W29172941582023 @default.
- W2917294158 crossrefType "journal-article" @default.
- W2917294158 hasAuthorship W2917294158A5027110712 @default.
- W2917294158 hasAuthorship W2917294158A5073624493 @default.
- W2917294158 hasConcept C11413529 @default.
- W2917294158 hasConcept C119857082 @default.
- W2917294158 hasConcept C13280743 @default.
- W2917294158 hasConcept C154945302 @default.
- W2917294158 hasConcept C159149176 @default.
- W2917294158 hasConcept C185798385 @default.
- W2917294158 hasConcept C205649164 @default.
- W2917294158 hasConcept C2780150128 @default.
- W2917294158 hasConcept C41008148 @default.
- W2917294158 hasConcept C48044578 @default.
- W2917294158 hasConcept C50644808 @default.
- W2917294158 hasConcept C77088390 @default.
- W2917294158 hasConcept C81388566 @default.
- W2917294158 hasConceptScore W2917294158C11413529 @default.
- W2917294158 hasConceptScore W2917294158C119857082 @default.
- W2917294158 hasConceptScore W2917294158C13280743 @default.
- W2917294158 hasConceptScore W2917294158C154945302 @default.
- W2917294158 hasConceptScore W2917294158C159149176 @default.
- W2917294158 hasConceptScore W2917294158C185798385 @default.
- W2917294158 hasConceptScore W2917294158C205649164 @default.
- W2917294158 hasConceptScore W2917294158C2780150128 @default.
- W2917294158 hasConceptScore W2917294158C41008148 @default.
- W2917294158 hasConceptScore W2917294158C48044578 @default.
- W2917294158 hasConceptScore W2917294158C50644808 @default.
- W2917294158 hasConceptScore W2917294158C77088390 @default.
- W2917294158 hasConceptScore W2917294158C81388566 @default.
- W2917294158 hasLocation W29172941581 @default.
- W2917294158 hasOpenAccess W2917294158 @default.
- W2917294158 hasPrimaryLocation W29172941581 @default.
- W2917294158 hasRelatedWork W112744582 @default.
- W2917294158 hasRelatedWork W1525510058 @default.
- W2917294158 hasRelatedWork W2038860231 @default.
- W2917294158 hasRelatedWork W2051854463 @default.
- W2917294158 hasRelatedWork W2100277042 @default.
- W2917294158 hasRelatedWork W2745001724 @default.
- W2917294158 hasRelatedWork W3005686721 @default.
- W2917294158 hasRelatedWork W3185179407 @default.
- W2917294158 hasRelatedWork W4313488044 @default.
- W2917294158 hasRelatedWork W4384300587 @default.
- W2917294158 hasVolume "130" @default.
- W2917294158 isParatext "false" @default.
- W2917294158 isRetracted "false" @default.
- W2917294158 magId "2917294158" @default.
- W2917294158 workType "article" @default.