Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917303411> ?p ?o ?g. }
- W2917303411 endingPage "37" @default.
- W2917303411 startingPage "30" @default.
- W2917303411 abstract "BackgroundSeveral recent publications have demonstrated the use of convolutional neural networks to classify images of melanoma at par with board-certified dermatologists. However, the non-availability of a public human benchmark restricts the comparability of the performance of these algorithms and thereby the technical progress in this field.MethodsAn electronic questionnaire was sent to dermatologists at 12 German university hospitals. Each questionnaire comprised 100 dermoscopic and 100 clinical images (80 nevi images and 20 biopsy-verified melanoma images, each), all open-source. The questionnaire recorded factors such as the years of experience in dermatology, performed skin checks, age, sex and the rank within the university hospital or the status as resident physician. For each image, the dermatologists were asked to provide a management decision (treat/biopsy lesion or reassure the patient). Main outcome measures were sensitivity, specificity and the receiver operating characteristics (ROC).ResultsTotal 157 dermatologists assessed all 100 dermoscopic images with an overall sensitivity of 74.1%, specificity of 60.0% and an ROC of 0.67 (range = 0.538–0.769); 145 dermatologists assessed all 100 clinical images with an overall sensitivity of 89.4%, specificity of 64.4% and an ROC of 0.769 (range = 0.613–0.9). Results between test-sets were significantly different (P < 0.05) confirming the need for a standardised benchmark.ConclusionsWe present the first public melanoma classification benchmark for both non-dermoscopic and dermoscopic images for comparing artificial intelligence algorithms with diagnostic performance of 145 or 157 dermatologists. Melanoma Classification Benchmark should be considered as a reference standard for white-skinned Western populations in the field of binary algorithmic melanoma classification." @default.
- W2917303411 created "2019-03-02" @default.
- W2917303411 creator A5007887862 @default.
- W2917303411 creator A5008750058 @default.
- W2917303411 creator A5018377200 @default.
- W2917303411 creator A5022293880 @default.
- W2917303411 creator A5025256131 @default.
- W2917303411 creator A5034365278 @default.
- W2917303411 creator A5038031102 @default.
- W2917303411 creator A5044736874 @default.
- W2917303411 creator A5056685282 @default.
- W2917303411 creator A5057226132 @default.
- W2917303411 creator A5067997906 @default.
- W2917303411 creator A5077469980 @default.
- W2917303411 creator A5084073390 @default.
- W2917303411 creator A5086408535 @default.
- W2917303411 creator A5086466437 @default.
- W2917303411 date "2019-04-01" @default.
- W2917303411 modified "2023-10-14" @default.
- W2917303411 title "Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark" @default.
- W2917303411 cites W2002507614 @default.
- W2917303411 cites W2016173422 @default.
- W2917303411 cites W2034650481 @default.
- W2917303411 cites W2330366745 @default.
- W2917303411 cites W2581082771 @default.
- W2917303411 cites W2757940437 @default.
- W2917303411 cites W2786147899 @default.
- W2917303411 cites W2806853752 @default.
- W2917303411 cites W2883308049 @default.
- W2917303411 cites W2891595725 @default.
- W2917303411 cites W4211223138 @default.
- W2917303411 doi "https://doi.org/10.1016/j.ejca.2018.12.016" @default.
- W2917303411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30802784" @default.
- W2917303411 hasPublicationYear "2019" @default.
- W2917303411 type Work @default.
- W2917303411 sameAs 2917303411 @default.
- W2917303411 citedByCount "94" @default.
- W2917303411 countsByYear W29173034112019 @default.
- W2917303411 countsByYear W29173034112020 @default.
- W2917303411 countsByYear W29173034112021 @default.
- W2917303411 countsByYear W29173034112022 @default.
- W2917303411 countsByYear W29173034112023 @default.
- W2917303411 crossrefType "journal-article" @default.
- W2917303411 hasAuthorship W2917303411A5007887862 @default.
- W2917303411 hasAuthorship W2917303411A5008750058 @default.
- W2917303411 hasAuthorship W2917303411A5018377200 @default.
- W2917303411 hasAuthorship W2917303411A5022293880 @default.
- W2917303411 hasAuthorship W2917303411A5025256131 @default.
- W2917303411 hasAuthorship W2917303411A5034365278 @default.
- W2917303411 hasAuthorship W2917303411A5038031102 @default.
- W2917303411 hasAuthorship W2917303411A5044736874 @default.
- W2917303411 hasAuthorship W2917303411A5056685282 @default.
- W2917303411 hasAuthorship W2917303411A5057226132 @default.
- W2917303411 hasAuthorship W2917303411A5067997906 @default.
- W2917303411 hasAuthorship W2917303411A5077469980 @default.
- W2917303411 hasAuthorship W2917303411A5084073390 @default.
- W2917303411 hasAuthorship W2917303411A5086408535 @default.
- W2917303411 hasAuthorship W2917303411A5086466437 @default.
- W2917303411 hasBestOaLocation W29173034111 @default.
- W2917303411 hasConcept C119857082 @default.
- W2917303411 hasConcept C126838900 @default.
- W2917303411 hasConcept C13280743 @default.
- W2917303411 hasConcept C154945302 @default.
- W2917303411 hasConcept C16005928 @default.
- W2917303411 hasConcept C185798385 @default.
- W2917303411 hasConcept C19527891 @default.
- W2917303411 hasConcept C205649164 @default.
- W2917303411 hasConcept C2776294769 @default.
- W2917303411 hasConcept C2777658100 @default.
- W2917303411 hasConcept C2779323059 @default.
- W2917303411 hasConcept C3020132585 @default.
- W2917303411 hasConcept C41008148 @default.
- W2917303411 hasConcept C502942594 @default.
- W2917303411 hasConcept C58471807 @default.
- W2917303411 hasConcept C71924100 @default.
- W2917303411 hasConceptScore W2917303411C119857082 @default.
- W2917303411 hasConceptScore W2917303411C126838900 @default.
- W2917303411 hasConceptScore W2917303411C13280743 @default.
- W2917303411 hasConceptScore W2917303411C154945302 @default.
- W2917303411 hasConceptScore W2917303411C16005928 @default.
- W2917303411 hasConceptScore W2917303411C185798385 @default.
- W2917303411 hasConceptScore W2917303411C19527891 @default.
- W2917303411 hasConceptScore W2917303411C205649164 @default.
- W2917303411 hasConceptScore W2917303411C2776294769 @default.
- W2917303411 hasConceptScore W2917303411C2777658100 @default.
- W2917303411 hasConceptScore W2917303411C2779323059 @default.
- W2917303411 hasConceptScore W2917303411C3020132585 @default.
- W2917303411 hasConceptScore W2917303411C41008148 @default.
- W2917303411 hasConceptScore W2917303411C502942594 @default.
- W2917303411 hasConceptScore W2917303411C58471807 @default.
- W2917303411 hasConceptScore W2917303411C71924100 @default.
- W2917303411 hasLocation W29173034111 @default.
- W2917303411 hasLocation W29173034112 @default.
- W2917303411 hasOpenAccess W2917303411 @default.
- W2917303411 hasPrimaryLocation W29173034111 @default.
- W2917303411 hasRelatedWork W1482009940 @default.
- W2917303411 hasRelatedWork W1514057341 @default.
- W2917303411 hasRelatedWork W1602738701 @default.