Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917360514> ?p ?o ?g. }
- W2917360514 endingPage "478" @default.
- W2917360514 startingPage "478" @default.
- W2917360514 abstract "A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95 % significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95 % significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products." @default.
- W2917360514 created "2019-03-02" @default.
- W2917360514 creator A5003161738 @default.
- W2917360514 creator A5027762042 @default.
- W2917360514 creator A5033043322 @default.
- W2917360514 creator A5038432913 @default.
- W2917360514 creator A5047193088 @default.
- W2917360514 creator A5080706605 @default.
- W2917360514 date "2019-02-26" @default.
- W2917360514 modified "2023-10-01" @default.
- W2917360514 title "An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US" @default.
- W2917360514 cites W1584768735 @default.
- W2917360514 cites W1851700709 @default.
- W2917360514 cites W1949985943 @default.
- W2917360514 cites W1953212484 @default.
- W2917360514 cites W1970847893 @default.
- W2917360514 cites W1976085920 @default.
- W2917360514 cites W1977473269 @default.
- W2917360514 cites W1983668139 @default.
- W2917360514 cites W1993329547 @default.
- W2917360514 cites W1997159233 @default.
- W2917360514 cites W1998083917 @default.
- W2917360514 cites W2009104157 @default.
- W2917360514 cites W2012968254 @default.
- W2917360514 cites W2017917682 @default.
- W2917360514 cites W2028979033 @default.
- W2917360514 cites W2033221642 @default.
- W2917360514 cites W2039348932 @default.
- W2917360514 cites W2039363399 @default.
- W2917360514 cites W2049760535 @default.
- W2917360514 cites W2050949740 @default.
- W2917360514 cites W2052866879 @default.
- W2917360514 cites W2055976274 @default.
- W2917360514 cites W2063422594 @default.
- W2917360514 cites W2077077296 @default.
- W2917360514 cites W2084414216 @default.
- W2917360514 cites W2084693386 @default.
- W2917360514 cites W2084908289 @default.
- W2917360514 cites W2085973850 @default.
- W2917360514 cites W2090592000 @default.
- W2917360514 cites W2091098468 @default.
- W2917360514 cites W2097434015 @default.
- W2917360514 cites W2110582201 @default.
- W2917360514 cites W2110795703 @default.
- W2917360514 cites W2116196493 @default.
- W2917360514 cites W2116428100 @default.
- W2917360514 cites W2118374184 @default.
- W2917360514 cites W2123744475 @default.
- W2917360514 cites W2128410490 @default.
- W2917360514 cites W2132334553 @default.
- W2917360514 cites W2132549823 @default.
- W2917360514 cites W2133747006 @default.
- W2917360514 cites W2135048240 @default.
- W2917360514 cites W2137750315 @default.
- W2917360514 cites W2141156530 @default.
- W2917360514 cites W2141219203 @default.
- W2917360514 cites W2143715729 @default.
- W2917360514 cites W2146397818 @default.
- W2917360514 cites W2147241431 @default.
- W2917360514 cites W2147347671 @default.
- W2917360514 cites W2157098139 @default.
- W2917360514 cites W2161853612 @default.
- W2917360514 cites W2163816662 @default.
- W2917360514 cites W2165296652 @default.
- W2917360514 cites W2166317254 @default.
- W2917360514 cites W2166609657 @default.
- W2917360514 cites W2190284289 @default.
- W2917360514 cites W2511497341 @default.
- W2917360514 cites W2603309785 @default.
- W2917360514 cites W2611772571 @default.
- W2917360514 cites W2619645687 @default.
- W2917360514 cites W2622143148 @default.
- W2917360514 cites W2725488146 @default.
- W2917360514 cites W2737609272 @default.
- W2917360514 cites W2740614026 @default.
- W2917360514 cites W2759163218 @default.
- W2917360514 cites W2765171976 @default.
- W2917360514 cites W2765487568 @default.
- W2917360514 cites W2765568504 @default.
- W2917360514 cites W2790317939 @default.
- W2917360514 cites W2891479069 @default.
- W2917360514 cites W2905043775 @default.
- W2917360514 cites W2963816767 @default.
- W2917360514 doi "https://doi.org/10.3390/rs11050478" @default.
- W2917360514 hasPublicationYear "2019" @default.
- W2917360514 type Work @default.
- W2917360514 sameAs 2917360514 @default.
- W2917360514 citedByCount "18" @default.
- W2917360514 countsByYear W29173605142019 @default.
- W2917360514 countsByYear W29173605142020 @default.
- W2917360514 countsByYear W29173605142021 @default.
- W2917360514 countsByYear W29173605142022 @default.
- W2917360514 countsByYear W29173605142023 @default.
- W2917360514 crossrefType "journal-article" @default.
- W2917360514 hasAuthorship W2917360514A5003161738 @default.
- W2917360514 hasAuthorship W2917360514A5027762042 @default.
- W2917360514 hasAuthorship W2917360514A5033043322 @default.
- W2917360514 hasAuthorship W2917360514A5038432913 @default.