Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917379618> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2917379618 endingPage "12" @default.
- W2917379618 startingPage "12" @default.
- W2917379618 abstract "Micro-bogging platforms like Twitter have proved to be fertile ground for political campaigns. In several applications, Twitter data has been mined to understand sentiments of the population, to determine trends and to understand the informal communication amongst people. A key challenge with the Twitter platform is that it produces immense quantities of noisy unstructured user-generated data across multiple social relations. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user-generated content with rich social relations in order to build descriptive and predictive models of social interactions. We analyse Twitter data for the #UgandaDecides hash tag for Uganda Presidential elections 2016, during the period of January to February. We derive inferences from the data and show that in some cases Twitter can be informative on actual events happening on ground. In the analysis we use a word-emotion lexicon to determine the nature of sentiments in the tweets and semantic orientation, to determine the ties conversations within the tweets have with positive and negative contexts, this is based on the pointwise mutual information technique. We find that twitter data analytics using both intensity-based measures and sentiment analysis can be useful to reflect the current offline political sentiment and we make a number of observations related to the task of monitoring public sentiments during an election campaign, including examining a variety of sample sizes, time parameters as well as methods for quantitatively and qualitatively exploring the underlying content." @default.
- W2917379618 created "2019-03-02" @default.
- W2917379618 creator A5000042163 @default.
- W2917379618 creator A5006965550 @default.
- W2917379618 creator A5034981826 @default.
- W2917379618 date "2018-12-18" @default.
- W2917379618 modified "2023-09-28" @default.
- W2917379618 title "Mining voter sentiments from Twitter data for the 2016 Uganda Presidential elections" @default.
- W2917379618 hasPublicationYear "2018" @default.
- W2917379618 type Work @default.
- W2917379618 sameAs 2917379618 @default.
- W2917379618 citedByCount "0" @default.
- W2917379618 crossrefType "journal-article" @default.
- W2917379618 hasAuthorship W2917379618A5000042163 @default.
- W2917379618 hasAuthorship W2917379618A5006965550 @default.
- W2917379618 hasAuthorship W2917379618A5034981826 @default.
- W2917379618 hasConcept C124101348 @default.
- W2917379618 hasConcept C136197465 @default.
- W2917379618 hasConcept C136764020 @default.
- W2917379618 hasConcept C152139883 @default.
- W2917379618 hasConcept C154945302 @default.
- W2917379618 hasConcept C17744445 @default.
- W2917379618 hasConcept C199539241 @default.
- W2917379618 hasConcept C2522767166 @default.
- W2917379618 hasConcept C2776129789 @default.
- W2917379618 hasConcept C2778121359 @default.
- W2917379618 hasConcept C41008148 @default.
- W2917379618 hasConcept C518677369 @default.
- W2917379618 hasConcept C66402592 @default.
- W2917379618 hasConcept C75684735 @default.
- W2917379618 hasConcept C7797323 @default.
- W2917379618 hasConcept C94625758 @default.
- W2917379618 hasConceptScore W2917379618C124101348 @default.
- W2917379618 hasConceptScore W2917379618C136197465 @default.
- W2917379618 hasConceptScore W2917379618C136764020 @default.
- W2917379618 hasConceptScore W2917379618C152139883 @default.
- W2917379618 hasConceptScore W2917379618C154945302 @default.
- W2917379618 hasConceptScore W2917379618C17744445 @default.
- W2917379618 hasConceptScore W2917379618C199539241 @default.
- W2917379618 hasConceptScore W2917379618C2522767166 @default.
- W2917379618 hasConceptScore W2917379618C2776129789 @default.
- W2917379618 hasConceptScore W2917379618C2778121359 @default.
- W2917379618 hasConceptScore W2917379618C41008148 @default.
- W2917379618 hasConceptScore W2917379618C518677369 @default.
- W2917379618 hasConceptScore W2917379618C66402592 @default.
- W2917379618 hasConceptScore W2917379618C75684735 @default.
- W2917379618 hasConceptScore W2917379618C7797323 @default.
- W2917379618 hasConceptScore W2917379618C94625758 @default.
- W2917379618 hasIssue "2" @default.
- W2917379618 hasLocation W29173796181 @default.
- W2917379618 hasOpenAccess W2917379618 @default.
- W2917379618 hasPrimaryLocation W29173796181 @default.
- W2917379618 hasRelatedWork W1795554267 @default.
- W2917379618 hasRelatedWork W1965071440 @default.
- W2917379618 hasRelatedWork W2029046727 @default.
- W2917379618 hasRelatedWork W2247088741 @default.
- W2917379618 hasRelatedWork W2617361325 @default.
- W2917379618 hasRelatedWork W2626038317 @default.
- W2917379618 hasRelatedWork W2777487994 @default.
- W2917379618 hasRelatedWork W2805289586 @default.
- W2917379618 hasRelatedWork W2890875777 @default.
- W2917379618 hasRelatedWork W2897059220 @default.
- W2917379618 hasRelatedWork W2979798729 @default.
- W2917379618 hasRelatedWork W3017090629 @default.
- W2917379618 hasRelatedWork W3037081021 @default.
- W2917379618 hasRelatedWork W3041916469 @default.
- W2917379618 hasRelatedWork W3048858200 @default.
- W2917379618 hasRelatedWork W3049681097 @default.
- W2917379618 hasRelatedWork W3089426061 @default.
- W2917379618 hasRelatedWork W2293933989 @default.
- W2917379618 hasRelatedWork W2529194632 @default.
- W2917379618 hasRelatedWork W2585584102 @default.
- W2917379618 hasVolume "3" @default.
- W2917379618 isParatext "false" @default.
- W2917379618 isRetracted "false" @default.
- W2917379618 magId "2917379618" @default.
- W2917379618 workType "article" @default.