Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917458084> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2917458084 abstract "Although the recent success of convolutional neural networks (CNNs) greatly advance the semantic segmentation of the natural images, few work has focused on the remote sensing images, especially the synthetic aperture radar (SAR) images. Specifically, the existing methods do not consider the speckle noise of the SAR images and the multi-scale characteristics contained in the SAR images. In this paper, we propose a multiscale convolutional neural network (CNN) model for SAR image semantic segmentation. The multi-scale CNN model includes noise removal stage, convolutional stage, feature concatenation stage and classification stage. In particular, we construct a sparse representation loss function to obtain a clear SAR image in noise removal stage. Then, the multi-scale convolutional stage is employed to learn the multi-scale deep features. The concatenation stage is used to connect the features with different scales and depths. Finally, softmax classifier is developed to obtain the labels of the SAR images with the multi-scale CNN model being trained in an end-to-end way. The experimental results on synthetic and real SAR images demonstrate the effectiveness of the proposed method." @default.
- W2917458084 created "2019-03-02" @default.
- W2917458084 creator A5002823491 @default.
- W2917458084 creator A5009073713 @default.
- W2917458084 creator A5025137837 @default.
- W2917458084 creator A5053012932 @default.
- W2917458084 creator A5053364777 @default.
- W2917458084 date "2018-12-01" @default.
- W2917458084 modified "2023-10-16" @default.
- W2917458084 title "Multi-Scale Convolutional Neural Network for SAR Image Semantic Segmentation" @default.
- W2917458084 cites W1903029394 @default.
- W2917458084 cites W2007527271 @default.
- W2917458084 cites W2035596087 @default.
- W2917458084 cites W2109255472 @default.
- W2917458084 cites W2166229804 @default.
- W2917458084 cites W2412782625 @default.
- W2917458084 cites W2414009677 @default.
- W2917458084 cites W2529506056 @default.
- W2917458084 cites W2574739416 @default.
- W2917458084 cites W2588852908 @default.
- W2917458084 cites W2754361766 @default.
- W2917458084 cites W2793485159 @default.
- W2917458084 doi "https://doi.org/10.1109/glocom.2018.8647657" @default.
- W2917458084 hasPublicationYear "2018" @default.
- W2917458084 type Work @default.
- W2917458084 sameAs 2917458084 @default.
- W2917458084 citedByCount "11" @default.
- W2917458084 countsByYear W29174580842019 @default.
- W2917458084 countsByYear W29174580842020 @default.
- W2917458084 countsByYear W29174580842021 @default.
- W2917458084 countsByYear W29174580842022 @default.
- W2917458084 crossrefType "proceedings-article" @default.
- W2917458084 hasAuthorship W2917458084A5002823491 @default.
- W2917458084 hasAuthorship W2917458084A5009073713 @default.
- W2917458084 hasAuthorship W2917458084A5025137837 @default.
- W2917458084 hasAuthorship W2917458084A5053012932 @default.
- W2917458084 hasAuthorship W2917458084A5053364777 @default.
- W2917458084 hasConcept C102290492 @default.
- W2917458084 hasConcept C108583219 @default.
- W2917458084 hasConcept C10929652 @default.
- W2917458084 hasConcept C114614502 @default.
- W2917458084 hasConcept C124504099 @default.
- W2917458084 hasConcept C138885662 @default.
- W2917458084 hasConcept C153180895 @default.
- W2917458084 hasConcept C154945302 @default.
- W2917458084 hasConcept C180940675 @default.
- W2917458084 hasConcept C188441871 @default.
- W2917458084 hasConcept C2776401178 @default.
- W2917458084 hasConcept C31972630 @default.
- W2917458084 hasConcept C33923547 @default.
- W2917458084 hasConcept C41008148 @default.
- W2917458084 hasConcept C41895202 @default.
- W2917458084 hasConcept C52622490 @default.
- W2917458084 hasConcept C554190296 @default.
- W2917458084 hasConcept C76155785 @default.
- W2917458084 hasConcept C81363708 @default.
- W2917458084 hasConcept C87360688 @default.
- W2917458084 hasConcept C87619178 @default.
- W2917458084 hasConcept C89600930 @default.
- W2917458084 hasConcept C95623464 @default.
- W2917458084 hasConceptScore W2917458084C102290492 @default.
- W2917458084 hasConceptScore W2917458084C108583219 @default.
- W2917458084 hasConceptScore W2917458084C10929652 @default.
- W2917458084 hasConceptScore W2917458084C114614502 @default.
- W2917458084 hasConceptScore W2917458084C124504099 @default.
- W2917458084 hasConceptScore W2917458084C138885662 @default.
- W2917458084 hasConceptScore W2917458084C153180895 @default.
- W2917458084 hasConceptScore W2917458084C154945302 @default.
- W2917458084 hasConceptScore W2917458084C180940675 @default.
- W2917458084 hasConceptScore W2917458084C188441871 @default.
- W2917458084 hasConceptScore W2917458084C2776401178 @default.
- W2917458084 hasConceptScore W2917458084C31972630 @default.
- W2917458084 hasConceptScore W2917458084C33923547 @default.
- W2917458084 hasConceptScore W2917458084C41008148 @default.
- W2917458084 hasConceptScore W2917458084C41895202 @default.
- W2917458084 hasConceptScore W2917458084C52622490 @default.
- W2917458084 hasConceptScore W2917458084C554190296 @default.
- W2917458084 hasConceptScore W2917458084C76155785 @default.
- W2917458084 hasConceptScore W2917458084C81363708 @default.
- W2917458084 hasConceptScore W2917458084C87360688 @default.
- W2917458084 hasConceptScore W2917458084C87619178 @default.
- W2917458084 hasConceptScore W2917458084C89600930 @default.
- W2917458084 hasConceptScore W2917458084C95623464 @default.
- W2917458084 hasLocation W29174580841 @default.
- W2917458084 hasOpenAccess W2917458084 @default.
- W2917458084 hasPrimaryLocation W29174580841 @default.
- W2917458084 hasRelatedWork W1974266560 @default.
- W2917458084 hasRelatedWork W2160730947 @default.
- W2917458084 hasRelatedWork W2545123933 @default.
- W2917458084 hasRelatedWork W2585813813 @default.
- W2917458084 hasRelatedWork W2601459726 @default.
- W2917458084 hasRelatedWork W3081713655 @default.
- W2917458084 hasRelatedWork W3110962985 @default.
- W2917458084 hasRelatedWork W3171448127 @default.
- W2917458084 hasRelatedWork W4308587699 @default.
- W2917458084 hasRelatedWork W4386025691 @default.
- W2917458084 isParatext "false" @default.
- W2917458084 isRetracted "false" @default.
- W2917458084 magId "2917458084" @default.
- W2917458084 workType "article" @default.