Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917458092> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2917458092 abstract "Neural network and quantum computer have the same conceptual structure similar to Huygens sources in the wave field generation. Any point of the space is a source with different intensity of waves that transport information in all the space where are superposed in a complex way to generate the wave field. In wave theory this sources are denoted Huygens sources. The morphogenetic field is the wave field generate by computed sources that are designed in a way to transform the original field in a wanted field to satisfy wanted property. The morphogenetic computation is this type of global computation by sources like Huygens sources that in parallel and synchronic way give us the designed field. So the intensity of the sources must be computed a priory before the morphogenetic effective computation in a way to have an entanglement of the sources that in the same time compute the field. If we cannot design the sources a priory and we want generate the field by a recursion process we enter easily in a deadlock state for which one source generate local wanted field that destroy the generation of another local field. So we have a contradiction between the action of different non entangled sources that cannot generate all the wanted field. In neural network we have the superposition of the input vectors in quantum mechanics we have the superposition of the states. In the neural network the intensity of the sources are the neural weights and the threshold. In quantum mechanics the intensity of the sources are the coefficients of the quantum states superposition. To design neural sources intensity (weights) we use the matrix of all possible inputs by which we can define all possible outputs. In the design neural network we cannot use the simple theory of input output but all the past or future input output are used. Space and time is not important in the design the network more important is to use the space of all possible input and output. The same in the quantum computer where we must design the unitary transformation for which only one wanted state coefficient is different from zero all the other coefficients are put to zero. In this way we can select among a huge possible states any one wanted state solution of our problem. In this scheme we include Deutsch problems, Berstein Varizani theorem and Nagata parallel function computing. The difference between quantum computer and neural network is that in quantum computer the basis is the oracle square matrix without any threshold and contradiction. In neural network the basis is a rectangular matrix of possible input with possible contradiction and threshold. So in neural network is necessary first to enlarge the basis in a way to solve with the minimum enlargement the contradiction and after use the threshold to reduce the complexity of the input basis. In the one step neural method we compute the parameters in one step as in quantum computer we use one query is used to generate the wanted result by a unitary matrix. To select wanted result in quantum computer and to obtain the wanted function in neural network, we use the projection operator method for non orthogonal states as oracle and inputs in quantum computer and neural network. Coker Specher theorem is revised in the light of the projection operator. In fact projection operator can select in a superposition one and only one element. Now when we have many basis with elements in common the local projection can enter in conflict with other connected basis projections. This put up in evidence that quantum computer and neural computer include contradiction or conflict. So before any computation we must solve the contradiction itself by the entangled projection method." @default.
- W2917458092 created "2019-03-02" @default.
- W2917458092 creator A5012535114 @default.
- W2917458092 creator A5053580078 @default.
- W2917458092 creator A5079601750 @default.
- W2917458092 creator A5083033261 @default.
- W2917458092 date "2017-10-14" @default.
- W2917458092 modified "2023-09-24" @default.
- W2917458092 title "Morphogenetic Sources in Quantum, Neural and Wave Fields: Part 2" @default.
- W2917458092 cites W1133888851 @default.
- W2917458092 cites W2023633872 @default.
- W2917458092 cites W2220331998 @default.
- W2917458092 cites W2287147779 @default.
- W2917458092 cites W2294416361 @default.
- W2917458092 cites W2343064182 @default.
- W2917458092 cites W2343599839 @default.
- W2917458092 cites W2414912772 @default.
- W2917458092 cites W2528065984 @default.
- W2917458092 cites W2530039013 @default.
- W2917458092 cites W2552932378 @default.
- W2917458092 cites W2560584338 @default.
- W2917458092 cites W2586244448 @default.
- W2917458092 cites W2589093635 @default.
- W2917458092 cites W2600337600 @default.
- W2917458092 cites W2602030865 @default.
- W2917458092 cites W2604529230 @default.
- W2917458092 cites W2604616066 @default.
- W2917458092 cites W2607282424 @default.
- W2917458092 doi "https://doi.org/10.1007/978-3-319-63639-9_15" @default.
- W2917458092 hasPublicationYear "2017" @default.
- W2917458092 type Work @default.
- W2917458092 sameAs 2917458092 @default.
- W2917458092 citedByCount "0" @default.
- W2917458092 crossrefType "book-chapter" @default.
- W2917458092 hasAuthorship W2917458092A5012535114 @default.
- W2917458092 hasAuthorship W2917458092A5053580078 @default.
- W2917458092 hasAuthorship W2917458092A5079601750 @default.
- W2917458092 hasAuthorship W2917458092A5083033261 @default.
- W2917458092 hasConcept C11413529 @default.
- W2917458092 hasConcept C121332964 @default.
- W2917458092 hasConcept C168773036 @default.
- W2917458092 hasConcept C202444582 @default.
- W2917458092 hasConcept C25227671 @default.
- W2917458092 hasConcept C27753989 @default.
- W2917458092 hasConcept C2777003461 @default.
- W2917458092 hasConcept C33923547 @default.
- W2917458092 hasConcept C41008148 @default.
- W2917458092 hasConcept C55615164 @default.
- W2917458092 hasConcept C62520636 @default.
- W2917458092 hasConcept C84114770 @default.
- W2917458092 hasConcept C9652623 @default.
- W2917458092 hasConceptScore W2917458092C11413529 @default.
- W2917458092 hasConceptScore W2917458092C121332964 @default.
- W2917458092 hasConceptScore W2917458092C168773036 @default.
- W2917458092 hasConceptScore W2917458092C202444582 @default.
- W2917458092 hasConceptScore W2917458092C25227671 @default.
- W2917458092 hasConceptScore W2917458092C27753989 @default.
- W2917458092 hasConceptScore W2917458092C2777003461 @default.
- W2917458092 hasConceptScore W2917458092C33923547 @default.
- W2917458092 hasConceptScore W2917458092C41008148 @default.
- W2917458092 hasConceptScore W2917458092C55615164 @default.
- W2917458092 hasConceptScore W2917458092C62520636 @default.
- W2917458092 hasConceptScore W2917458092C84114770 @default.
- W2917458092 hasConceptScore W2917458092C9652623 @default.
- W2917458092 hasLocation W29174580921 @default.
- W2917458092 hasOpenAccess W2917458092 @default.
- W2917458092 hasPrimaryLocation W29174580921 @default.
- W2917458092 hasRelatedWork W1483896361 @default.
- W2917458092 hasRelatedWork W1584123317 @default.
- W2917458092 hasRelatedWork W1619144970 @default.
- W2917458092 hasRelatedWork W2001816903 @default.
- W2917458092 hasRelatedWork W2045928226 @default.
- W2917458092 hasRelatedWork W2105181852 @default.
- W2917458092 hasRelatedWork W2138262447 @default.
- W2917458092 hasRelatedWork W2297316452 @default.
- W2917458092 hasRelatedWork W2511368206 @default.
- W2917458092 hasRelatedWork W2540253016 @default.
- W2917458092 hasRelatedWork W2557720759 @default.
- W2917458092 hasRelatedWork W2762243539 @default.
- W2917458092 hasRelatedWork W2765575779 @default.
- W2917458092 hasRelatedWork W2792066543 @default.
- W2917458092 hasRelatedWork W2897775991 @default.
- W2917458092 hasRelatedWork W2952581329 @default.
- W2917458092 hasRelatedWork W2963097190 @default.
- W2917458092 hasRelatedWork W2970595998 @default.
- W2917458092 hasRelatedWork W3098070615 @default.
- W2917458092 hasRelatedWork W3165397361 @default.
- W2917458092 isParatext "false" @default.
- W2917458092 isRetracted "false" @default.
- W2917458092 magId "2917458092" @default.
- W2917458092 workType "book-chapter" @default.