Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917491519> ?p ?o ?g. }
- W2917491519 endingPage "351" @default.
- W2917491519 startingPage "333" @default.
- W2917491519 abstract "Abstract Wetlands are valuable ecosystems providing a variety of important ecosystem services such as food supply and flood control. Due to increasing anthropogenic influences and the impact of climate change, wetlands are increasingly threatened and degraded. An effective monitoring of wetlands is therefore necessary to preserve and restore these endangered ecosystems. Earth Observation (EO) data offer a great potential to support cost-effective and large-scale monitoring of wetlands. Current state-of-the-art methods for wetland mapping, however, require large training data and manual effort and can therefore only be locally applied. The focus of this study is to evaluate a methodology for large-scale and highly automated wetland mapping based on current EO data streams. For this purpose, an algorithm for water and wetness detection based on multi-temporal optical imagery and topographic data is presented. Suitable spectral indices sensitive to water and wetness were identified using feature selection methods based on mutual information between optical indices and occurrence of water and wetness. In combination with the Topographic Wetness Index (TWI), these were used to derive monthly water and wetness masks using a dynamic thresholding approach. Aggregating all observations corrected for seasonal bias yielded flooding and wetness frequencies and the Water Wetness Presence (or Probability) Index (WWPI) as an indicator for wetland occurrence or a pre-inventory. To demonstrate the applicability of the proposed method, the algorithm is demonstrated at three study sites with different wetland types in Kenya/Uganda, Algeria, and Austria using Sentinel-2 MultiSpectral Instrument (MSI) imagery. For all sites, the overall accuracy was above 92%. User's and producer's accuracies were higher for water (>96%) than for wetness (>75%). Due to the high degree of automation and low processing time, the proposed method is applicable on a large scale and has already been applied during the production of the Copernicus High Resolution Water-Wetness Layer and within the European Space Agency (ESA) project GlobWetland Africa." @default.
- W2917491519 created "2019-03-02" @default.
- W2917491519 creator A5002452435 @default.
- W2917491519 creator A5003266641 @default.
- W2917491519 creator A5003640361 @default.
- W2917491519 creator A5036175055 @default.
- W2917491519 creator A5044186937 @default.
- W2917491519 date "2019-04-01" @default.
- W2917491519 modified "2023-10-04" @default.
- W2917491519 title "A highly automated algorithm for wetland detection using multi-temporal optical satellite data" @default.
- W2917491519 cites W1523331465 @default.
- W2917491519 cites W1610015390 @default.
- W2917491519 cites W1964693451 @default.
- W2917491519 cites W1974047452 @default.
- W2917491519 cites W1978617972 @default.
- W2917491519 cites W1980989386 @default.
- W2917491519 cites W1981435276 @default.
- W2917491519 cites W1981646498 @default.
- W2917491519 cites W1982206826 @default.
- W2917491519 cites W1985717943 @default.
- W2917491519 cites W1988790013 @default.
- W2917491519 cites W1989174391 @default.
- W2917491519 cites W1990938062 @default.
- W2917491519 cites W1992813404 @default.
- W2917491519 cites W1993443125 @default.
- W2917491519 cites W1994780096 @default.
- W2917491519 cites W1995581599 @default.
- W2917491519 cites W2011500029 @default.
- W2917491519 cites W2030640006 @default.
- W2917491519 cites W2030851497 @default.
- W2917491519 cites W2036841511 @default.
- W2917491519 cites W2048483781 @default.
- W2917491519 cites W2050887162 @default.
- W2917491519 cites W2052323809 @default.
- W2917491519 cites W2056830726 @default.
- W2917491519 cites W2063906281 @default.
- W2917491519 cites W2064383339 @default.
- W2917491519 cites W2071229892 @default.
- W2917491519 cites W2077509829 @default.
- W2917491519 cites W2078877578 @default.
- W2917491519 cites W2084744129 @default.
- W2917491519 cites W2088572913 @default.
- W2917491519 cites W2092675441 @default.
- W2917491519 cites W2095055020 @default.
- W2917491519 cites W2098653311 @default.
- W2917491519 cites W2101678239 @default.
- W2917491519 cites W2127170577 @default.
- W2917491519 cites W2138002125 @default.
- W2917491519 cites W2156386141 @default.
- W2917491519 cites W2173333326 @default.
- W2917491519 cites W2191643823 @default.
- W2917491519 cites W2336807904 @default.
- W2917491519 cites W2473951811 @default.
- W2917491519 cites W2550337922 @default.
- W2917491519 cites W2560167313 @default.
- W2917491519 cites W2911964244 @default.
- W2917491519 doi "https://doi.org/10.1016/j.rse.2019.01.017" @default.
- W2917491519 hasPublicationYear "2019" @default.
- W2917491519 type Work @default.
- W2917491519 sameAs 2917491519 @default.
- W2917491519 citedByCount "61" @default.
- W2917491519 countsByYear W29174915192019 @default.
- W2917491519 countsByYear W29174915192020 @default.
- W2917491519 countsByYear W29174915192021 @default.
- W2917491519 countsByYear W29174915192022 @default.
- W2917491519 countsByYear W29174915192023 @default.
- W2917491519 crossrefType "journal-article" @default.
- W2917491519 hasAuthorship W2917491519A5002452435 @default.
- W2917491519 hasAuthorship W2917491519A5003266641 @default.
- W2917491519 hasAuthorship W2917491519A5003640361 @default.
- W2917491519 hasAuthorship W2917491519A5036175055 @default.
- W2917491519 hasAuthorship W2917491519A5044186937 @default.
- W2917491519 hasConcept C127313418 @default.
- W2917491519 hasConcept C127413603 @default.
- W2917491519 hasConcept C146978453 @default.
- W2917491519 hasConcept C18903297 @default.
- W2917491519 hasConcept C19269812 @default.
- W2917491519 hasConcept C39432304 @default.
- W2917491519 hasConcept C41008148 @default.
- W2917491519 hasConcept C62649853 @default.
- W2917491519 hasConcept C67715294 @default.
- W2917491519 hasConcept C86803240 @default.
- W2917491519 hasConceptScore W2917491519C127313418 @default.
- W2917491519 hasConceptScore W2917491519C127413603 @default.
- W2917491519 hasConceptScore W2917491519C146978453 @default.
- W2917491519 hasConceptScore W2917491519C18903297 @default.
- W2917491519 hasConceptScore W2917491519C19269812 @default.
- W2917491519 hasConceptScore W2917491519C39432304 @default.
- W2917491519 hasConceptScore W2917491519C41008148 @default.
- W2917491519 hasConceptScore W2917491519C62649853 @default.
- W2917491519 hasConceptScore W2917491519C67715294 @default.
- W2917491519 hasConceptScore W2917491519C86803240 @default.
- W2917491519 hasLocation W29174915191 @default.
- W2917491519 hasOpenAccess W2917491519 @default.
- W2917491519 hasPrimaryLocation W29174915191 @default.
- W2917491519 hasRelatedWork W1521304817 @default.
- W2917491519 hasRelatedWork W2013329914 @default.
- W2917491519 hasRelatedWork W2037305200 @default.