Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917509711> ?p ?o ?g. }
- W2917509711 endingPage "560" @default.
- W2917509711 startingPage "549" @default.
- W2917509711 abstract "Fuel cell performance testing and in operando synchrotron radiography were used to investigate the effect of polytetrafluoroethylene (PTFE) in standalone microporous layers (MPLs) on mass transport and membrane hydration. Two standalone MPLs with 20 wt% and 30 wt% PTFE were fabricated and tested with inlet gas relative humidity (RH) between 50 and 100%. This study demonstrates that the performance of a fuel cell using a standalone MPL with 30 wt% PTFE decreases when the RH of the inlet gases is increased from 50% to 100%, whereas the performance of a fuel cell using a standalone MPL with 20 wt% PTFE remains stable over the same relative humidity range. Furthermore, this study demonstrates that a tradeoff between membrane hydration and mass transport losses must be considered when increasing the PTFE content within the MPL. Higher PTFE content led to greater liquid water accumulation adjacent to the catalyst layer. The greater liquid water accumulation adjacent to the catalyst layer improved membrane hydration and proton conductivity but also led to an increase in mass transport resistance. Standalone MPLs with higher PTFE content did not support high current density operation because the mass transport limitations outweighed the benefits of improved membrane hydration." @default.
- W2917509711 created "2019-03-02" @default.
- W2917509711 creator A5007990030 @default.
- W2917509711 creator A5028838357 @default.
- W2917509711 creator A5030608747 @default.
- W2917509711 creator A5055461945 @default.
- W2917509711 creator A5063558415 @default.
- W2917509711 creator A5080176129 @default.
- W2917509711 date "2019-04-01" @default.
- W2917509711 modified "2023-10-06" @default.
- W2917509711 title "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells" @default.
- W2917509711 cites W1648021774 @default.
- W2917509711 cites W1839350900 @default.
- W2917509711 cites W1963982639 @default.
- W2917509711 cites W1967842088 @default.
- W2917509711 cites W1973868537 @default.
- W2917509711 cites W1986599061 @default.
- W2917509711 cites W1988131319 @default.
- W2917509711 cites W1989210163 @default.
- W2917509711 cites W1990274231 @default.
- W2917509711 cites W1992742035 @default.
- W2917509711 cites W1995601499 @default.
- W2917509711 cites W1997726085 @default.
- W2917509711 cites W1999091775 @default.
- W2917509711 cites W2000181815 @default.
- W2917509711 cites W2001055719 @default.
- W2917509711 cites W2002357388 @default.
- W2917509711 cites W2003263862 @default.
- W2917509711 cites W2004597094 @default.
- W2917509711 cites W2009706297 @default.
- W2917509711 cites W2010906372 @default.
- W2917509711 cites W2014906503 @default.
- W2917509711 cites W2015334981 @default.
- W2917509711 cites W2017384874 @default.
- W2917509711 cites W2026642389 @default.
- W2917509711 cites W2029137700 @default.
- W2917509711 cites W2032016414 @default.
- W2917509711 cites W2033477755 @default.
- W2917509711 cites W2033839170 @default.
- W2917509711 cites W2034142852 @default.
- W2917509711 cites W2042718751 @default.
- W2917509711 cites W2048636147 @default.
- W2917509711 cites W2058152515 @default.
- W2917509711 cites W2062899541 @default.
- W2917509711 cites W2065490078 @default.
- W2917509711 cites W2067126321 @default.
- W2917509711 cites W2070029720 @default.
- W2917509711 cites W2073166253 @default.
- W2917509711 cites W2081586698 @default.
- W2917509711 cites W2088811983 @default.
- W2917509711 cites W2090460582 @default.
- W2917509711 cites W2093517993 @default.
- W2917509711 cites W2105515080 @default.
- W2917509711 cites W2111165776 @default.
- W2917509711 cites W2123459220 @default.
- W2917509711 cites W2137026747 @default.
- W2917509711 cites W2138817539 @default.
- W2917509711 cites W2145767987 @default.
- W2917509711 cites W2146371757 @default.
- W2917509711 cites W2161419128 @default.
- W2917509711 cites W2187025935 @default.
- W2917509711 cites W2291090574 @default.
- W2917509711 cites W2299897050 @default.
- W2917509711 cites W2309632559 @default.
- W2917509711 cites W2312525192 @default.
- W2917509711 cites W2338567248 @default.
- W2917509711 cites W2434751335 @default.
- W2917509711 cites W2468922135 @default.
- W2917509711 cites W2480429758 @default.
- W2917509711 cites W2507962647 @default.
- W2917509711 cites W2529170426 @default.
- W2917509711 cites W2555029152 @default.
- W2917509711 cites W2560900616 @default.
- W2917509711 cites W2566899580 @default.
- W2917509711 cites W2578719295 @default.
- W2917509711 cites W2586473367 @default.
- W2917509711 cites W2618295356 @default.
- W2917509711 cites W2738227255 @default.
- W2917509711 cites W2765208797 @default.
- W2917509711 cites W2777718909 @default.
- W2917509711 cites W2793556136 @default.
- W2917509711 cites W2797509408 @default.
- W2917509711 cites W2797640198 @default.
- W2917509711 cites W2894977467 @default.
- W2917509711 cites W2899253471 @default.
- W2917509711 cites W2903950308 @default.
- W2917509711 cites W2908926848 @default.
- W2917509711 doi "https://doi.org/10.1016/j.apenergy.2019.02.037" @default.
- W2917509711 hasPublicationYear "2019" @default.
- W2917509711 type Work @default.
- W2917509711 sameAs 2917509711 @default.
- W2917509711 citedByCount "25" @default.
- W2917509711 countsByYear W29175097112019 @default.
- W2917509711 countsByYear W29175097112020 @default.
- W2917509711 countsByYear W29175097112021 @default.
- W2917509711 countsByYear W29175097112022 @default.
- W2917509711 countsByYear W29175097112023 @default.
- W2917509711 crossrefType "journal-article" @default.