Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917550650> ?p ?o ?g. }
- W2917550650 abstract "This paper uses robots to assemble pegs into holes on surfaces with different colors and textures. It especially targets at the problem of peg-in-hole assembly with initial position uncertainty. Two in-hand cameras and a force-torque sensor are used to account for the position uncertainty. A program sequence comprising learning-based visual servoing, spiral search, and impedance control is implemented to perform the peg-in-hole task with feedback from the above sensors. Contributions are mainly made in the learning-based visual servoing of the sequence, where a deep neural network is trained with various sets of synthetic data generated using the concept of domain randomization to predict where a hole is. In the experiments and analysis section, the network is analyzed and compared, and a real-world robotic system to insert pegs to holes using the proposed method is implemented. The results show that the implemented peg-in-hole assembly system can perform successful peg-in-hole insertions on surfaces with various colors and textures. It can generally speed up the entire peg-in-hole process." @default.
- W2917550650 created "2019-03-02" @default.
- W2917550650 creator A5016270703 @default.
- W2917550650 creator A5033529730 @default.
- W2917550650 creator A5087787651 @default.
- W2917550650 date "2019-02-25" @default.
- W2917550650 modified "2023-09-23" @default.
- W2917550650 title "Quickly Inserting Pegs into Uncertain Holes using Multi-view Images and Deep Network Trained on Synthetic Data" @default.
- W2917550650 cites W1481659984 @default.
- W2917550650 cites W1522301498 @default.
- W2917550650 cites W1686810756 @default.
- W2917550650 cites W1828481943 @default.
- W2917550650 cites W2008731016 @default.
- W2917550650 cites W2015731639 @default.
- W2917550650 cites W2018469774 @default.
- W2917550650 cites W2034738191 @default.
- W2917550650 cites W2064557786 @default.
- W2917550650 cites W2072150766 @default.
- W2917550650 cites W2103261336 @default.
- W2917550650 cites W2105660272 @default.
- W2917550650 cites W2115617434 @default.
- W2917550650 cites W2144091652 @default.
- W2917550650 cites W2152164805 @default.
- W2917550650 cites W2165698076 @default.
- W2917550650 cites W2201912979 @default.
- W2917550650 cites W2319870162 @default.
- W2917550650 cites W2416498763 @default.
- W2917550650 cites W2558355904 @default.
- W2917550650 cites W2565902248 @default.
- W2917550650 cites W2590953969 @default.
- W2917550650 cites W2605102758 @default.
- W2917550650 cites W2750745447 @default.
- W2917550650 cites W2754340109 @default.
- W2917550650 cites W2765496735 @default.
- W2917550650 cites W2781935341 @default.
- W2917550650 cites W2792811825 @default.
- W2917550650 cites W2805278171 @default.
- W2917550650 cites W2884615100 @default.
- W2917550650 cites W2885163910 @default.
- W2917550650 cites W2895439318 @default.
- W2917550650 cites W2896213312 @default.
- W2917550650 cites W2897170587 @default.
- W2917550650 cites W2897383738 @default.
- W2917550650 cites W2903844197 @default.
- W2917550650 cites W2908452573 @default.
- W2917550650 cites W2962736495 @default.
- W2917550650 cites W2962837436 @default.
- W2917550650 cites W2962899390 @default.
- W2917550650 cites W2963201472 @default.
- W2917550650 cites W2963271314 @default.
- W2917550650 cites W2963940579 @default.
- W2917550650 cites W2964239605 @default.
- W2917550650 cites W3146473693 @default.
- W2917550650 doi "https://doi.org/10.48550/arxiv.1902.09157" @default.
- W2917550650 hasPublicationYear "2019" @default.
- W2917550650 type Work @default.
- W2917550650 sameAs 2917550650 @default.
- W2917550650 citedByCount "8" @default.
- W2917550650 countsByYear W29175506502020 @default.
- W2917550650 countsByYear W29175506502021 @default.
- W2917550650 crossrefType "posted-content" @default.
- W2917550650 hasAuthorship W2917550650A5016270703 @default.
- W2917550650 hasAuthorship W2917550650A5033529730 @default.
- W2917550650 hasAuthorship W2917550650A5087787651 @default.
- W2917550650 hasBestOaLocation W29175506501 @default.
- W2917550650 hasConcept C10138342 @default.
- W2917550650 hasConcept C10912380 @default.
- W2917550650 hasConcept C111919701 @default.
- W2917550650 hasConcept C134306372 @default.
- W2917550650 hasConcept C154945302 @default.
- W2917550650 hasConcept C162324750 @default.
- W2917550650 hasConcept C198082294 @default.
- W2917550650 hasConcept C2778112365 @default.
- W2917550650 hasConcept C31972630 @default.
- W2917550650 hasConcept C33923547 @default.
- W2917550650 hasConcept C36503486 @default.
- W2917550650 hasConcept C41008148 @default.
- W2917550650 hasConcept C50644808 @default.
- W2917550650 hasConcept C54355233 @default.
- W2917550650 hasConcept C86803240 @default.
- W2917550650 hasConcept C90509273 @default.
- W2917550650 hasConcept C98045186 @default.
- W2917550650 hasConceptScore W2917550650C10138342 @default.
- W2917550650 hasConceptScore W2917550650C10912380 @default.
- W2917550650 hasConceptScore W2917550650C111919701 @default.
- W2917550650 hasConceptScore W2917550650C134306372 @default.
- W2917550650 hasConceptScore W2917550650C154945302 @default.
- W2917550650 hasConceptScore W2917550650C162324750 @default.
- W2917550650 hasConceptScore W2917550650C198082294 @default.
- W2917550650 hasConceptScore W2917550650C2778112365 @default.
- W2917550650 hasConceptScore W2917550650C31972630 @default.
- W2917550650 hasConceptScore W2917550650C33923547 @default.
- W2917550650 hasConceptScore W2917550650C36503486 @default.
- W2917550650 hasConceptScore W2917550650C41008148 @default.
- W2917550650 hasConceptScore W2917550650C50644808 @default.
- W2917550650 hasConceptScore W2917550650C54355233 @default.
- W2917550650 hasConceptScore W2917550650C86803240 @default.
- W2917550650 hasConceptScore W2917550650C90509273 @default.
- W2917550650 hasConceptScore W2917550650C98045186 @default.
- W2917550650 hasLocation W29175506501 @default.