Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917552926> ?p ?o ?g. }
- W2917552926 endingPage "1065" @default.
- W2917552926 startingPage "1045" @default.
- W2917552926 abstract "Abstract. Wise management of water resources requires data. Nevertheless, the amount of streamflow data being collected globally continues to decline. Generating hydrologic data together with citizen scientists can help fill this growing hydrological data gap. Our aim herein was to (1) perform an initial evaluation of three simple streamflow measurement methods (i.e., float, salt dilution, and Bernoulli run-up), (2) evaluate the same three methods with citizen scientists, and (3) apply the preferred method at more sites with more people. For computing errors, we used midsection measurements from an acoustic Doppler velocimeter as reference flows. First, we (authors) performed 20 evaluation measurements in headwater catchments of the Kathmandu Valley, Nepal. Reference flows ranged from 6.4 to 240 L s−1. Absolute errors averaged 23 %, 15 %, and 37 % with average biases of 8 %, 6 %, and 26 % for float, salt dilution, and Bernoulli methods, respectively. Second, we evaluated the same three methods at 15 sites in two watersheds within the Kathmandu Valley with 10 groups of citizen scientists (three to four members each) and one “expert” group (authors). At each site, each group performed three simple methods; experts also performed SonTek FlowTracker midsection reference measurements (ranging from 4.2 to 896 L s−1). For float, salt dilution, and Bernoulli methods, absolute errors averaged 41 %, 21 %, and 43 % for experts and 63 %, 28 %, and 131 % for citizen scientists, while biases averaged 41 %, 19 %, and 40 % for experts and 52 %, 7 %, and 127 % for citizen scientists, respectively. Based on these results, we selected salt dilution as the preferred method. Finally, we performed larger-scale pilot testing in week-long pre- and post-monsoon Citizen Science Flow campaigns involving 25 and 37 citizen scientists, respectively. Observed flows (n=131 pre-monsoon; n=133 post-monsoon) were distributed among the 10 headwater catchments of the Kathmandu Valley and ranged from 0.4 to 425 L s−1 and from 1.1 to 1804 L s−1 in pre- and post-monsoon, respectively. Future work should further evaluate uncertainties of citizen science salt dilution measurements, the feasibility of their application to larger regions, and the information content of additional streamflow data." @default.
- W2917552926 created "2019-03-02" @default.
- W2917552926 creator A5013397788 @default.
- W2917552926 creator A5039380738 @default.
- W2917552926 creator A5045834578 @default.
- W2917552926 creator A5046096885 @default.
- W2917552926 creator A5050368116 @default.
- W2917552926 creator A5059858933 @default.
- W2917552926 creator A5082582512 @default.
- W2917552926 date "2019-02-20" @default.
- W2917552926 modified "2023-10-16" @default.
- W2917552926 title "Citizen science flow – an assessment of simple streamflow measurement methods" @default.
- W2917552926 cites W1483126228 @default.
- W2917552926 cites W1504073505 @default.
- W2917552926 cites W1553315782 @default.
- W2917552926 cites W1587028137 @default.
- W2917552926 cites W1922112072 @default.
- W2917552926 cites W1968261307 @default.
- W2917552926 cites W1969413791 @default.
- W2917552926 cites W1972348057 @default.
- W2917552926 cites W1974627413 @default.
- W2917552926 cites W1990893947 @default.
- W2917552926 cites W1994224624 @default.
- W2917552926 cites W2010488921 @default.
- W2917552926 cites W2032146370 @default.
- W2917552926 cites W2057076426 @default.
- W2917552926 cites W2063204990 @default.
- W2917552926 cites W2067200628 @default.
- W2917552926 cites W2082915410 @default.
- W2917552926 cites W2087265149 @default.
- W2917552926 cites W2094940683 @default.
- W2917552926 cites W2097402578 @default.
- W2917552926 cites W2100704846 @default.
- W2917552926 cites W2115545952 @default.
- W2917552926 cites W2122463349 @default.
- W2917552926 cites W2130860302 @default.
- W2917552926 cites W2145635192 @default.
- W2917552926 cites W2149522140 @default.
- W2917552926 cites W2168993830 @default.
- W2917552926 cites W2216351798 @default.
- W2917552926 cites W2284343953 @default.
- W2917552926 cites W2297300066 @default.
- W2917552926 cites W2323177515 @default.
- W2917552926 cites W2499133386 @default.
- W2917552926 cites W2580679370 @default.
- W2917552926 cites W2588083849 @default.
- W2917552926 cites W2589010086 @default.
- W2917552926 cites W2597010357 @default.
- W2917552926 cites W2606078809 @default.
- W2917552926 cites W2609972725 @default.
- W2917552926 cites W2738785046 @default.
- W2917552926 cites W2786982483 @default.
- W2917552926 cites W2800529152 @default.
- W2917552926 cites W2816610986 @default.
- W2917552926 cites W4240978670 @default.
- W2917552926 doi "https://doi.org/10.5194/hess-23-1045-2019" @default.
- W2917552926 hasPublicationYear "2019" @default.
- W2917552926 type Work @default.
- W2917552926 sameAs 2917552926 @default.
- W2917552926 citedByCount "22" @default.
- W2917552926 countsByYear W29175529262019 @default.
- W2917552926 countsByYear W29175529262020 @default.
- W2917552926 countsByYear W29175529262021 @default.
- W2917552926 countsByYear W29175529262022 @default.
- W2917552926 countsByYear W29175529262023 @default.
- W2917552926 crossrefType "journal-article" @default.
- W2917552926 hasAuthorship W2917552926A5013397788 @default.
- W2917552926 hasAuthorship W2917552926A5039380738 @default.
- W2917552926 hasAuthorship W2917552926A5045834578 @default.
- W2917552926 hasAuthorship W2917552926A5046096885 @default.
- W2917552926 hasAuthorship W2917552926A5050368116 @default.
- W2917552926 hasAuthorship W2917552926A5059858933 @default.
- W2917552926 hasAuthorship W2917552926A5082582512 @default.
- W2917552926 hasBestOaLocation W29175529261 @default.
- W2917552926 hasConcept C105795698 @default.
- W2917552926 hasConcept C121332964 @default.
- W2917552926 hasConcept C126645576 @default.
- W2917552926 hasConcept C127313418 @default.
- W2917552926 hasConcept C127413603 @default.
- W2917552926 hasConcept C146978453 @default.
- W2917552926 hasConcept C152361515 @default.
- W2917552926 hasConcept C153294291 @default.
- W2917552926 hasConcept C153823671 @default.
- W2917552926 hasConcept C187320778 @default.
- W2917552926 hasConcept C18903297 @default.
- W2917552926 hasConcept C199104240 @default.
- W2917552926 hasConcept C205649164 @default.
- W2917552926 hasConcept C2524010 @default.
- W2917552926 hasConcept C2780337265 @default.
- W2917552926 hasConcept C33923547 @default.
- W2917552926 hasConcept C38349280 @default.
- W2917552926 hasConcept C39432304 @default.
- W2917552926 hasConcept C41008148 @default.
- W2917552926 hasConcept C53739315 @default.
- W2917552926 hasConcept C58640448 @default.
- W2917552926 hasConcept C76886044 @default.
- W2917552926 hasConcept C86803240 @default.
- W2917552926 hasConcept C96618451 @default.