Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917580846> ?p ?o ?g. }
- W2917580846 endingPage "1622" @default.
- W2917580846 startingPage "1611" @default.
- W2917580846 abstract "Dynamic synthetic biointerface is a new concept of biomaterials with smart surface properties capable of controlled display of bioactive ligands, dynamic modulation of cell-biomaterial interactions, and subsequently clever manipulation of fundamental cell behaviors like adhesion, migration, proliferation, differentiation, apoptosis, and so on. As mimics of the extracellular matrix (ECM), such molecularly dynamic biointerfaces have attracted increasing attention because of their tunable biological effects with great significance in in situ cell biology, tissue engineering, drug targeting, and cell isolation for cancer theranostics. Approaches to control bioligand presentation on materials mainly rely on surface functionalization with dynamic or reversible chemical linkers to which the ligands are tethered. Photoelectric-transformable or photocleavable chemistry, host-guest supramolecular chemistry, and multiple noncovalent interactions were initially employed for fabrication of dynamic synthetic biointerfaces. However, the external stimuli required in these systems, including electrochemical potential, electrochemical reaction, and near-infrared or UV light, are mostly invasive to living cells; and few of them are able to respond to the stimuli occurring in natural biological processes. In addition, most of current systems focused only on the control of cell adhesion, other cell behaviors like migration, differentiation and apoptosis have rarely been explored. Therefore, the development of novel synthetic biointerfaces that permit access to noninvasive control of diverse cell behaviors still represents a key challenge in biomaterials science. Our group pioneers the use of reversible covalent bonds, metal coordinative interactions, and the molecular affinity of molecularly imprinted synthetic receptors as the dynamic driving forces for the fabrication of smart biointerfaces. Several typical biological stimuli, such as glycemic volatility, body temperature fluctuations, regional disparity of pH values, and specific biomolecules, were tactfully involved in our systems. In this Account, we highlight the strategies we have used on the exploitation of dynamic synthetic biointerfaces based on the above three types of reversible chemical interactions. While our attention has been focused on biologically stimuli-responsive or other noninvasive ligand presentation, the versatility of dynamic synthetic biointerfaces in control of cell adhesion, directing cell differentiation, and targeting cell apoptosis has also been successfully demonstrated. In addition, a paradigm shift of dynamic synthetic biointerfaces from macroscopic to microscopic scale (e.g., nanobiointerfaces) was conceptually demonstrated in our research. The potential applications of these developed dynamic systems, including fundamental cell biology, surface engineering of biomaterials, scaffold-free tissue engineering, cell-based cancer diagnosis, and drug targeting cancer therapy, were also introduced, respectively. Although the development of dynamic synthetic biointerfaces is still in its infancy, we strongly believe that further efforts in this field will play a continuously and increasingly significant role in bridging the gap between chemistry and biology." @default.
- W2917580846 created "2019-03-02" @default.
- W2917580846 creator A5018442100 @default.
- W2917580846 creator A5020147975 @default.
- W2917580846 creator A5047598001 @default.
- W2917580846 creator A5048030742 @default.
- W2917580846 creator A5077637962 @default.
- W2917580846 date "2019-02-22" @default.
- W2917580846 modified "2023-10-15" @default.
- W2917580846 title "Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects" @default.
- W2917580846 cites W1553336672 @default.
- W2917580846 cites W1946145193 @default.
- W2917580846 cites W1966691544 @default.
- W2917580846 cites W1972782334 @default.
- W2917580846 cites W1974452230 @default.
- W2917580846 cites W1975810455 @default.
- W2917580846 cites W2000326450 @default.
- W2917580846 cites W2005303313 @default.
- W2917580846 cites W2011953070 @default.
- W2917580846 cites W2013940099 @default.
- W2917580846 cites W2031691795 @default.
- W2917580846 cites W2039992772 @default.
- W2917580846 cites W2049259181 @default.
- W2917580846 cites W2053518955 @default.
- W2917580846 cites W2063084794 @default.
- W2917580846 cites W2072360925 @default.
- W2917580846 cites W2073617279 @default.
- W2917580846 cites W2078514836 @default.
- W2917580846 cites W2102137939 @default.
- W2917580846 cites W2103511109 @default.
- W2917580846 cites W2104277781 @default.
- W2917580846 cites W2120294554 @default.
- W2917580846 cites W2124542021 @default.
- W2917580846 cites W2139078120 @default.
- W2917580846 cites W2154986879 @default.
- W2917580846 cites W2164027899 @default.
- W2917580846 cites W2164275581 @default.
- W2917580846 cites W2167775880 @default.
- W2917580846 cites W2179107360 @default.
- W2917580846 cites W2218788548 @default.
- W2917580846 cites W2319950635 @default.
- W2917580846 cites W2321913191 @default.
- W2917580846 cites W2334994976 @default.
- W2917580846 cites W2376235646 @default.
- W2917580846 cites W2536181379 @default.
- W2917580846 cites W2572667510 @default.
- W2917580846 cites W2583475973 @default.
- W2917580846 cites W2757434936 @default.
- W2917580846 cites W2761082821 @default.
- W2917580846 cites W2789411226 @default.
- W2917580846 cites W2790402620 @default.
- W2917580846 cites W2793149209 @default.
- W2917580846 cites W2799356317 @default.
- W2917580846 cites W2800642284 @default.
- W2917580846 cites W2803850251 @default.
- W2917580846 cites W2806892354 @default.
- W2917580846 cites W2890894194 @default.
- W2917580846 cites W2892596803 @default.
- W2917580846 cites W2895240941 @default.
- W2917580846 cites W2900187086 @default.
- W2917580846 cites W4240280963 @default.
- W2917580846 cites W4247731757 @default.
- W2917580846 cites W4248411781 @default.
- W2917580846 cites W4249115221 @default.
- W2917580846 doi "https://doi.org/10.1021/acs.accounts.8b00604" @default.
- W2917580846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30793586" @default.
- W2917580846 hasPublicationYear "2019" @default.
- W2917580846 type Work @default.
- W2917580846 sameAs 2917580846 @default.
- W2917580846 citedByCount "52" @default.
- W2917580846 countsByYear W29175808462019 @default.
- W2917580846 countsByYear W29175808462020 @default.
- W2917580846 countsByYear W29175808462021 @default.
- W2917580846 countsByYear W29175808462022 @default.
- W2917580846 countsByYear W29175808462023 @default.
- W2917580846 crossrefType "journal-article" @default.
- W2917580846 hasAuthorship W2917580846A5018442100 @default.
- W2917580846 hasAuthorship W2917580846A5020147975 @default.
- W2917580846 hasAuthorship W2917580846A5047598001 @default.
- W2917580846 hasAuthorship W2917580846A5048030742 @default.
- W2917580846 hasAuthorship W2917580846A5077637962 @default.
- W2917580846 hasConcept C115537861 @default.
- W2917580846 hasConcept C12554922 @default.
- W2917580846 hasConcept C147789679 @default.
- W2917580846 hasConcept C171250308 @default.
- W2917580846 hasConcept C178790620 @default.
- W2917580846 hasConcept C185592680 @default.
- W2917580846 hasConcept C192562407 @default.
- W2917580846 hasConcept C2778414984 @default.
- W2917580846 hasConcept C2781308654 @default.
- W2917580846 hasConcept C32909587 @default.
- W2917580846 hasConcept C86803240 @default.
- W2917580846 hasConcept C93275456 @default.
- W2917580846 hasConceptScore W2917580846C115537861 @default.
- W2917580846 hasConceptScore W2917580846C12554922 @default.
- W2917580846 hasConceptScore W2917580846C147789679 @default.
- W2917580846 hasConceptScore W2917580846C171250308 @default.
- W2917580846 hasConceptScore W2917580846C178790620 @default.