Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917811495> ?p ?o ?g. }
- W2917811495 endingPage "1992" @default.
- W2917811495 startingPage "1981" @default.
- W2917811495 abstract "Manifold learning has been widely used for dimensionality reduction and feature extraction of data recently. However, in the application of the related algorithms, it often suffers from noisy or unreliable data problems. For example, when the sample data have complex background, occlusions, and/or illuminations, the clustering of data is still a challenging task. To address these issues, we propose a family of novel algorithms for manifold regularized non-negative matrix factorization in this paper. In the algorithms, based on the alpha-beta-divergences, graph regularization with multiple segments is utilized to constrain the data transitivity in data decomposition. By adjusting two tuning parameters, we show that the proposed algorithms can significantly improve the robustness with respect to the images with complex background. The efficiency of the proposed algorithms is confirmed by the experiments on four different datasets. For different initializations and datasets, variations of cost functions and decomposition data elements in the learning are presented to show the convergent properties of the algorithms." @default.
- W2917811495 created "2019-03-02" @default.
- W2917811495 creator A5076944292 @default.
- W2917811495 creator A5083319062 @default.
- W2917811495 creator A5089722002 @default.
- W2917811495 date "2021-04-01" @default.
- W2917811495 modified "2023-10-17" @default.
- W2917811495 title "Learning Manifold Structures With Subspace Segmentations" @default.
- W2917811495 cites W1243961807 @default.
- W2917811495 cites W1565002050 @default.
- W2917811495 cites W1680502250 @default.
- W2917811495 cites W1902027874 @default.
- W2917811495 cites W2001141328 @default.
- W2917811495 cites W2012642013 @default.
- W2917811495 cites W2017288758 @default.
- W2917811495 cites W2026731079 @default.
- W2917811495 cites W2041064868 @default.
- W2917811495 cites W2045405869 @default.
- W2917811495 cites W2047758746 @default.
- W2917811495 cites W2053186076 @default.
- W2917811495 cites W2054022051 @default.
- W2917811495 cites W2071429201 @default.
- W2917811495 cites W2073301055 @default.
- W2917811495 cites W2097703723 @default.
- W2917811495 cites W2097872774 @default.
- W2917811495 cites W2108119513 @default.
- W2917811495 cites W2109255472 @default.
- W2917811495 cites W2121281940 @default.
- W2917811495 cites W2121947440 @default.
- W2917811495 cites W2133284024 @default.
- W2917811495 cites W2138621090 @default.
- W2917811495 cites W2148753264 @default.
- W2917811495 cites W2149544245 @default.
- W2917811495 cites W2155151262 @default.
- W2917811495 cites W2155213743 @default.
- W2917811495 cites W2155904486 @default.
- W2917811495 cites W2162316550 @default.
- W2917811495 cites W2167686991 @default.
- W2917811495 cites W2169658215 @default.
- W2917811495 cites W2189422931 @default.
- W2917811495 cites W2262946425 @default.
- W2917811495 cites W2474608001 @default.
- W2917811495 cites W2740726992 @default.
- W2917811495 cites W2743475884 @default.
- W2917811495 cites W2756220878 @default.
- W2917811495 cites W2790034647 @default.
- W2917811495 cites W2790772420 @default.
- W2917811495 cites W2901373116 @default.
- W2917811495 cites W3099627780 @default.
- W2917811495 doi "https://doi.org/10.1109/tcyb.2019.2895497" @default.
- W2917811495 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30794522" @default.
- W2917811495 hasPublicationYear "2021" @default.
- W2917811495 type Work @default.
- W2917811495 sameAs 2917811495 @default.
- W2917811495 citedByCount "7" @default.
- W2917811495 countsByYear W29178114952020 @default.
- W2917811495 countsByYear W29178114952021 @default.
- W2917811495 countsByYear W29178114952022 @default.
- W2917811495 countsByYear W29178114952023 @default.
- W2917811495 crossrefType "journal-article" @default.
- W2917811495 hasAuthorship W2917811495A5076944292 @default.
- W2917811495 hasAuthorship W2917811495A5083319062 @default.
- W2917811495 hasAuthorship W2917811495A5089722002 @default.
- W2917811495 hasConcept C104317684 @default.
- W2917811495 hasConcept C111030470 @default.
- W2917811495 hasConcept C11413529 @default.
- W2917811495 hasConcept C121332964 @default.
- W2917811495 hasConcept C132525143 @default.
- W2917811495 hasConcept C151876577 @default.
- W2917811495 hasConcept C152671427 @default.
- W2917811495 hasConcept C153180895 @default.
- W2917811495 hasConcept C154945302 @default.
- W2917811495 hasConcept C158693339 @default.
- W2917811495 hasConcept C185592680 @default.
- W2917811495 hasConcept C32834561 @default.
- W2917811495 hasConcept C41008148 @default.
- W2917811495 hasConcept C42355184 @default.
- W2917811495 hasConcept C55493867 @default.
- W2917811495 hasConcept C62520636 @default.
- W2917811495 hasConcept C63479239 @default.
- W2917811495 hasConcept C70518039 @default.
- W2917811495 hasConcept C73555534 @default.
- W2917811495 hasConcept C80444323 @default.
- W2917811495 hasConceptScore W2917811495C104317684 @default.
- W2917811495 hasConceptScore W2917811495C111030470 @default.
- W2917811495 hasConceptScore W2917811495C11413529 @default.
- W2917811495 hasConceptScore W2917811495C121332964 @default.
- W2917811495 hasConceptScore W2917811495C132525143 @default.
- W2917811495 hasConceptScore W2917811495C151876577 @default.
- W2917811495 hasConceptScore W2917811495C152671427 @default.
- W2917811495 hasConceptScore W2917811495C153180895 @default.
- W2917811495 hasConceptScore W2917811495C154945302 @default.
- W2917811495 hasConceptScore W2917811495C158693339 @default.
- W2917811495 hasConceptScore W2917811495C185592680 @default.
- W2917811495 hasConceptScore W2917811495C32834561 @default.
- W2917811495 hasConceptScore W2917811495C41008148 @default.
- W2917811495 hasConceptScore W2917811495C42355184 @default.
- W2917811495 hasConceptScore W2917811495C55493867 @default.