Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917813450> ?p ?o ?g. }
- W2917813450 abstract "Condition diagnosis of critical system such as multiple-bearing system is one of the most important maintenance activities in industry because it is essential that faults are detected early before the performance of the whole system is affected. Currently, the most significant issues in condition diagnosis are how to improve accuracy and stability of accuracy, as well as lessen the complexity of the diagnosis which would reduce processing time. Researchers have developed diagnosis techniques based on metaheuristic, specifically, Back Propagation Neural Network (BPNN) for single bearing system and small numbers of condition classes. However, they are not directly applicable or effective for multiple-bearing system because the diagnosis accuracy achieved is unsatisfactory. Therefore, this research proposed hybrid techniques to improve the performance of BPNN in terms of accuracy and stability of accuracy by using Adaptive Genetic Algorithm and Back Propagation Neural Network (AGA-BPNN), and multiple BPNN with AGA-BPNN (mBPNNAGA- BPNN). These techniques are tested and validated on vibration signal data of multiple-bearing system. Experimental results showed the proposed techniques outperformed the BPPN in condition diagnosis. However, the large number of features from multiple-bearing system has affected the complexity of AGA-BPNN and mBPNN-AGA-BPNN, and significantly increased the amount of required processing time. Thus to investigate further, whether the number of features required can be reduced without compromising the diagnosis accuracy and stability, Grey Relational Analysis (GRA) was applied to determine the most dominant features in reducing the complexity of the diagnosis techniques. The experimental results showed that the hybrid of GRA and mBPNN-AGA-BPNN achieved accuracies of 99% for training, 100% for validation and 100% for testing. Besides that, the performance of the proposed hybrid accuracy increased by 11.9%, 13.5% and 11.9% in training, validation and testing respectively when compared to the standard BPNN. This hybrid has lessened the complexity which reduced nearly 55.96% of processing time. Furthermore, the hybrid has improved the stability of the accuracy whereby the differences in accuracy between the maximum and minimum values were 0.2%, 0% and 0% for training, validation and testing respectively. Hence, it can be concluded that the proposed diagnosis techniques have improved the accuracy and stability of accuracy within the minimum complexity and significantly reduced processing time." @default.
- W2917813450 created "2019-03-02" @default.
- W2917813450 creator A5080630245 @default.
- W2917813450 date "2014-07-01" @default.
- W2917813450 modified "2023-09-26" @default.
- W2917813450 title "Enhanced genetic algorithm-based back propagation neural network to diagnose conditions of multiple-bearing system" @default.
- W2917813450 cites W11536623 @default.
- W2917813450 cites W133269669 @default.
- W2917813450 cites W135987692 @default.
- W2917813450 cites W147662901 @default.
- W2917813450 cites W1497734931 @default.
- W2917813450 cites W1510598017 @default.
- W2917813450 cites W1533652713 @default.
- W2917813450 cites W1816223280 @default.
- W2917813450 cites W1912935262 @default.
- W2917813450 cites W1965491739 @default.
- W2917813450 cites W1970928522 @default.
- W2917813450 cites W1974283773 @default.
- W2917813450 cites W1975514583 @default.
- W2917813450 cites W1977993961 @default.
- W2917813450 cites W1978453339 @default.
- W2917813450 cites W1982639395 @default.
- W2917813450 cites W1990067914 @default.
- W2917813450 cites W1990771923 @default.
- W2917813450 cites W1991867477 @default.
- W2917813450 cites W1996874019 @default.
- W2917813450 cites W1999299815 @default.
- W2917813450 cites W2002034577 @default.
- W2917813450 cites W2002096058 @default.
- W2917813450 cites W2006929660 @default.
- W2917813450 cites W2008552750 @default.
- W2917813450 cites W2010651547 @default.
- W2917813450 cites W2012059993 @default.
- W2917813450 cites W2012509466 @default.
- W2917813450 cites W2012694893 @default.
- W2917813450 cites W2013196231 @default.
- W2917813450 cites W2013377700 @default.
- W2917813450 cites W2014135487 @default.
- W2917813450 cites W2019505419 @default.
- W2917813450 cites W2021909145 @default.
- W2917813450 cites W2022865835 @default.
- W2917813450 cites W2022885479 @default.
- W2917813450 cites W2026534059 @default.
- W2917813450 cites W2028492346 @default.
- W2917813450 cites W2029209206 @default.
- W2917813450 cites W2029458478 @default.
- W2917813450 cites W2030096977 @default.
- W2917813450 cites W2034790739 @default.
- W2917813450 cites W2035702636 @default.
- W2917813450 cites W2036223819 @default.
- W2917813450 cites W2039710285 @default.
- W2917813450 cites W2041877508 @default.
- W2917813450 cites W2043559685 @default.
- W2917813450 cites W2049087538 @default.
- W2917813450 cites W2053154970 @default.
- W2917813450 cites W2053436766 @default.
- W2917813450 cites W2057094080 @default.
- W2917813450 cites W2057361254 @default.
- W2917813450 cites W2057577134 @default.
- W2917813450 cites W2063789075 @default.
- W2917813450 cites W2064236088 @default.
- W2917813450 cites W2066980082 @default.
- W2917813450 cites W2073040595 @default.
- W2917813450 cites W2075099466 @default.
- W2917813450 cites W2075882871 @default.
- W2917813450 cites W2078347442 @default.
- W2917813450 cites W2084068006 @default.
- W2917813450 cites W2087566928 @default.
- W2917813450 cites W2091706951 @default.
- W2917813450 cites W21015766 @default.
- W2917813450 cites W2102211123 @default.
- W2917813450 cites W2104245272 @default.
- W2917813450 cites W2106100979 @default.
- W2917813450 cites W2108813057 @default.
- W2917813450 cites W2110840966 @default.
- W2917813450 cites W2110915286 @default.
- W2917813450 cites W2111270626 @default.
- W2917813450 cites W2112465475 @default.
- W2917813450 cites W2115138750 @default.
- W2917813450 cites W2115190271 @default.
- W2917813450 cites W2124470735 @default.
- W2917813450 cites W2124776405 @default.
- W2917813450 cites W2124884615 @default.
- W2917813450 cites W2125954320 @default.
- W2917813450 cites W2135198734 @default.
- W2917813450 cites W2138184934 @default.
- W2917813450 cites W2140336071 @default.
- W2917813450 cites W2144877227 @default.
- W2917813450 cites W2146440428 @default.
- W2917813450 cites W2160166502 @default.
- W2917813450 cites W2163321856 @default.
- W2917813450 cites W2182783764 @default.
- W2917813450 cites W2293573509 @default.
- W2917813450 cites W2480129385 @default.
- W2917813450 cites W2536558328 @default.
- W2917813450 cites W2542700981 @default.
- W2917813450 cites W2551934046 @default.
- W2917813450 cites W2912565176 @default.
- W2917813450 cites W33163430 @default.
- W2917813450 cites W611451750 @default.