Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917833488> ?p ?o ?g. }
- W2917833488 endingPage "478" @default.
- W2917833488 startingPage "461" @default.
- W2917833488 abstract "Abstract The terrestrial biosphere strongly modulates atmospheric CO 2 mixing ratios, whose inexorable rise propels anthropogenic climate change. Modeling and mechanistically understanding C uptake by the terrestrial biosphere are thus of broad societal concerns. Yet despite considerable progress, scaling up point observations to landscape and larger scales continues to frustrate analyses of the anthropogenically perturbed global C cycle. While that up‐scaling is our overarching motivation, here we focus on one of its elements, modeling C uptake at a given site. We devise a novel artificial neural network (ANN)‐based model of C uptake at Harvard Forest that combines locally observed and remotely sensed variables. Most of our model predictors are those used by an established ecosystem C uptake model, the Vegetation Photosynthesis and Respiration Model (VPRM), easing comparisons. To those, we add observed cumulative antecedent precipitation and soil temperature. We find that model errors are much larger in winter, indicating that better understanding and modeling of respiration will likely discernibly improve model performance. Comparing the ANN and VPRM results reveals errors attributed to unrealistic treatment of temperature in the VPRM formulation, indicating that better representation of temperature dependencies is also likely to enhance model skill. By judiciously comparing VPRM and ANN errors we thus overcome ANNs' notoriety for concealing the mechanisms underlying their predictive skills. We demonstrate their ability to identify outstanding ecosystem science knowledge gaps and particularly fruitful corresponding model development directions, improving site specific and up‐scaling flux modeling and understanding of the climate impacts of the northern forest." @default.
- W2917833488 created "2019-03-02" @default.
- W2917833488 creator A5001086799 @default.
- W2917833488 creator A5010489381 @default.
- W2917833488 creator A5069473325 @default.
- W2917833488 creator A5079266970 @default.
- W2917833488 creator A5086337379 @default.
- W2917833488 date "2019-03-01" @default.
- W2917833488 modified "2023-09-25" @default.
- W2917833488 title "Listening to the Forest: An Artificial Neural Network‐Based Model of Carbon Uptake at Harvard Forest" @default.
- W2917833488 cites W1667828214 @default.
- W2917833488 cites W1965626659 @default.
- W2917833488 cites W1968353815 @default.
- W2917833488 cites W1968644285 @default.
- W2917833488 cites W1978411256 @default.
- W2917833488 cites W2004177958 @default.
- W2917833488 cites W2005940941 @default.
- W2917833488 cites W2024991751 @default.
- W2917833488 cites W2032691163 @default.
- W2917833488 cites W2033245860 @default.
- W2917833488 cites W2036197592 @default.
- W2917833488 cites W2075210427 @default.
- W2917833488 cites W2075728409 @default.
- W2917833488 cites W2080690725 @default.
- W2917833488 cites W2087070363 @default.
- W2917833488 cites W2094971595 @default.
- W2917833488 cites W2102906774 @default.
- W2917833488 cites W2103496339 @default.
- W2917833488 cites W2108460995 @default.
- W2917833488 cites W2113143455 @default.
- W2917833488 cites W2118563481 @default.
- W2917833488 cites W2123513648 @default.
- W2917833488 cites W2125818112 @default.
- W2917833488 cites W2140440859 @default.
- W2917833488 cites W2142729451 @default.
- W2917833488 cites W2145236739 @default.
- W2917833488 cites W2146453061 @default.
- W2917833488 cites W2146652541 @default.
- W2917833488 cites W2147423506 @default.
- W2917833488 cites W2149541905 @default.
- W2917833488 cites W2155152860 @default.
- W2917833488 cites W2161324066 @default.
- W2917833488 cites W2258277964 @default.
- W2917833488 cites W2272473773 @default.
- W2917833488 cites W2293062392 @default.
- W2917833488 cites W2334589475 @default.
- W2917833488 cites W2338049369 @default.
- W2917833488 cites W2463335026 @default.
- W2917833488 cites W2521425865 @default.
- W2917833488 cites W2578763203 @default.
- W2917833488 cites W2581115296 @default.
- W2917833488 cites W2596014293 @default.
- W2917833488 cites W2601712048 @default.
- W2917833488 cites W2614056253 @default.
- W2917833488 cites W2776082420 @default.
- W2917833488 cites W2784746060 @default.
- W2917833488 cites W2793981257 @default.
- W2917833488 cites W384064634 @default.
- W2917833488 cites W4241009079 @default.
- W2917833488 doi "https://doi.org/10.1029/2018jg004791" @default.
- W2917833488 hasPublicationYear "2019" @default.
- W2917833488 type Work @default.
- W2917833488 sameAs 2917833488 @default.
- W2917833488 citedByCount "4" @default.
- W2917833488 countsByYear W29178334882021 @default.
- W2917833488 countsByYear W29178334882023 @default.
- W2917833488 crossrefType "journal-article" @default.
- W2917833488 hasAuthorship W2917833488A5001086799 @default.
- W2917833488 hasAuthorship W2917833488A5010489381 @default.
- W2917833488 hasAuthorship W2917833488A5069473325 @default.
- W2917833488 hasAuthorship W2917833488A5079266970 @default.
- W2917833488 hasAuthorship W2917833488A5086337379 @default.
- W2917833488 hasBestOaLocation W29178334881 @default.
- W2917833488 hasConcept C107218244 @default.
- W2917833488 hasConcept C110872660 @default.
- W2917833488 hasConcept C121332964 @default.
- W2917833488 hasConcept C132651083 @default.
- W2917833488 hasConcept C142724271 @default.
- W2917833488 hasConcept C154945302 @default.
- W2917833488 hasConcept C168754636 @default.
- W2917833488 hasConcept C178790620 @default.
- W2917833488 hasConcept C185592680 @default.
- W2917833488 hasConcept C18903297 @default.
- W2917833488 hasConcept C2524010 @default.
- W2917833488 hasConcept C2776133958 @default.
- W2917833488 hasConcept C33923547 @default.
- W2917833488 hasConcept C39432304 @default.
- W2917833488 hasConcept C41008148 @default.
- W2917833488 hasConcept C50644808 @default.
- W2917833488 hasConcept C65680412 @default.
- W2917833488 hasConcept C68709404 @default.
- W2917833488 hasConcept C71924100 @default.
- W2917833488 hasConcept C73935091 @default.
- W2917833488 hasConcept C86803240 @default.
- W2917833488 hasConcept C91586092 @default.
- W2917833488 hasConcept C99844830 @default.
- W2917833488 hasConceptScore W2917833488C107218244 @default.
- W2917833488 hasConceptScore W2917833488C110872660 @default.