Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917996064> ?p ?o ?g. }
- W2917996064 endingPage "29354" @default.
- W2917996064 startingPage "29344" @default.
- W2917996064 abstract "Privacy in the Internet of Things is a fundamental challenge for the Ubiquitous healthcare systems that depend on the data aggregated and collaborative deep learning among different parties. This paper proposes the MSCryptoNet, a novel framework that enables the scalable execution and the conversion of the state-of-the-art learned neural network to the MSCryptoNet models in the privacy-preservation setting. We also design a method for approximation of the activation function basically used in the convolutional neural network (i.e., Sigmoid and Rectified linear unit) with low degree polynomials, which is vital for computations in the homomorphic encryption schemes. Our model seems to target the following scenarios: 1) the practical way to enforce the evaluation of classifier whose inputs are encrypted with possibly different encryption schemes or even different keys while securing all operations including intermediate results and 2) the minimization of the communication and computational cost of the data providers. The MSCryptoNet is based on the multi-scheme fully homomorphic encryption. We also prove that the MSCryptoNet as a privacy-preserving deep learning scheme over the aggregated encrypted data is secured." @default.
- W2917996064 created "2019-03-02" @default.
- W2917996064 creator A5019371593 @default.
- W2917996064 creator A5036840299 @default.
- W2917996064 creator A5080286262 @default.
- W2917996064 date "2019-01-01" @default.
- W2917996064 modified "2023-10-17" @default.
- W2917996064 title "MSCryptoNet: Multi-Scheme Privacy-Preserving Deep Learning in Cloud Computing" @default.
- W2917996064 cites W1853548709 @default.
- W2917996064 cites W1881831204 @default.
- W2917996064 cites W1932198206 @default.
- W2917996064 cites W1987743852 @default.
- W2917996064 cites W2006484959 @default.
- W2917996064 cites W2024165284 @default.
- W2917996064 cites W2037902920 @default.
- W2917996064 cites W2046604427 @default.
- W2917996064 cites W2048994663 @default.
- W2917996064 cites W2049768725 @default.
- W2917996064 cites W2068238369 @default.
- W2917996064 cites W2073413752 @default.
- W2917996064 cites W2077905990 @default.
- W2917996064 cites W2079668303 @default.
- W2917996064 cites W2100495367 @default.
- W2917996064 cites W2129167380 @default.
- W2917996064 cites W2136394324 @default.
- W2917996064 cites W2137351756 @default.
- W2917996064 cites W2177209050 @default.
- W2917996064 cites W2233194383 @default.
- W2917996064 cites W2275132005 @default.
- W2917996064 cites W2431517476 @default.
- W2917996064 cites W2499340481 @default.
- W2917996064 cites W2535690855 @default.
- W2917996064 cites W2578401585 @default.
- W2917996064 cites W2591882872 @default.
- W2917996064 cites W2594719586 @default.
- W2917996064 cites W2597998853 @default.
- W2917996064 cites W2611396850 @default.
- W2917996064 cites W2620512600 @default.
- W2917996064 cites W2621635773 @default.
- W2917996064 cites W2701059868 @default.
- W2917996064 cites W2729742878 @default.
- W2917996064 cites W2782827498 @default.
- W2917996064 cites W2786793274 @default.
- W2917996064 cites W2801874531 @default.
- W2917996064 cites W2884597820 @default.
- W2917996064 cites W2891772277 @default.
- W2917996064 cites W2911056119 @default.
- W2917996064 cites W3102431071 @default.
- W2917996064 doi "https://doi.org/10.1109/access.2019.2901219" @default.
- W2917996064 hasPublicationYear "2019" @default.
- W2917996064 type Work @default.
- W2917996064 sameAs 2917996064 @default.
- W2917996064 citedByCount "57" @default.
- W2917996064 countsByYear W29179960642019 @default.
- W2917996064 countsByYear W29179960642020 @default.
- W2917996064 countsByYear W29179960642021 @default.
- W2917996064 countsByYear W29179960642022 @default.
- W2917996064 countsByYear W29179960642023 @default.
- W2917996064 crossrefType "journal-article" @default.
- W2917996064 hasAuthorship W2917996064A5019371593 @default.
- W2917996064 hasAuthorship W2917996064A5036840299 @default.
- W2917996064 hasAuthorship W2917996064A5080286262 @default.
- W2917996064 hasBestOaLocation W29179960641 @default.
- W2917996064 hasConcept C111919701 @default.
- W2917996064 hasConcept C123201435 @default.
- W2917996064 hasConcept C134306372 @default.
- W2917996064 hasConcept C33923547 @default.
- W2917996064 hasConcept C38652104 @default.
- W2917996064 hasConcept C41008148 @default.
- W2917996064 hasConcept C77618280 @default.
- W2917996064 hasConcept C79974875 @default.
- W2917996064 hasConceptScore W2917996064C111919701 @default.
- W2917996064 hasConceptScore W2917996064C123201435 @default.
- W2917996064 hasConceptScore W2917996064C134306372 @default.
- W2917996064 hasConceptScore W2917996064C33923547 @default.
- W2917996064 hasConceptScore W2917996064C38652104 @default.
- W2917996064 hasConceptScore W2917996064C41008148 @default.
- W2917996064 hasConceptScore W2917996064C77618280 @default.
- W2917996064 hasConceptScore W2917996064C79974875 @default.
- W2917996064 hasFunder F4320321001 @default.
- W2917996064 hasFunder F4320335787 @default.
- W2917996064 hasLocation W29179960641 @default.
- W2917996064 hasOpenAccess W2917996064 @default.
- W2917996064 hasPrimaryLocation W29179960641 @default.
- W2917996064 hasRelatedWork W2011105265 @default.
- W2917996064 hasRelatedWork W2072515108 @default.
- W2917996064 hasRelatedWork W2499478834 @default.
- W2917996064 hasRelatedWork W2548008374 @default.
- W2917996064 hasRelatedWork W2805708143 @default.
- W2917996064 hasRelatedWork W2883509087 @default.
- W2917996064 hasRelatedWork W2904847553 @default.
- W2917996064 hasRelatedWork W2906009203 @default.
- W2917996064 hasRelatedWork W4212792472 @default.
- W2917996064 hasRelatedWork W3144133170 @default.
- W2917996064 hasVolume "7" @default.
- W2917996064 isParatext "false" @default.
- W2917996064 isRetracted "false" @default.
- W2917996064 magId "2917996064" @default.