Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917996640> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2917996640 abstract "Demand response management in smart cities is one of the most challenging tasks to be performed due to the continuous changes in the load profile of the home users. The existing proposals in the literature fail to observe the hidden patterns in the load profile of these users. So, to fill these gaps, the concept of deep learning has been used in this paper for smart energy management in a smart city. The consumption data from smart homes (SHs) is gathered and taken as an input to the deep learning model, convolution neural network (CNN). The CNN model learns the hidden patterns in the data and outputs different load curves. These load curves are then used to train a support vector regression (SVR) model, which predicts the overall load consumption of all SHs in the smart city. This prediction is then compared with the power generation from the grid and consequently the demand response (DR) of the connected SHs is managed so as to minimize the gap between predicted demand and supply. The proposed scheme has been evaluated on the dataset collected from PJM and open energy information with respect to load demand prediction and DR management. The results obtained prove the efficacy of the proposed scheme. The prediction errors, i.e., root mean squared error and mean absolute percentage error are observed less in comparison to the cases when CNN and SVR are used individually." @default.
- W2917996640 created "2019-03-02" @default.
- W2917996640 creator A5036704324 @default.
- W2917996640 creator A5037688054 @default.
- W2917996640 creator A5050009901 @default.
- W2917996640 creator A5056940320 @default.
- W2917996640 creator A5063414144 @default.
- W2917996640 date "2018-12-01" @default.
- W2917996640 modified "2023-10-02" @default.
- W2917996640 title "DRUMS: Demand Response Management in a Smart City Using Deep Learning and SVR" @default.
- W2917996640 cites W2024485885 @default.
- W2917996640 cites W2062100562 @default.
- W2917996640 cites W2064469609 @default.
- W2917996640 cites W2090359259 @default.
- W2917996640 cites W2145509823 @default.
- W2917996640 cites W2204566248 @default.
- W2917996640 cites W2312446965 @default.
- W2917996640 cites W2382072841 @default.
- W2917996640 cites W2550154412 @default.
- W2917996640 cites W2595984151 @default.
- W2917996640 cites W2742473260 @default.
- W2917996640 cites W2754902318 @default.
- W2917996640 cites W2774653084 @default.
- W2917996640 cites W2789768939 @default.
- W2917996640 doi "https://doi.org/10.1109/glocom.2018.8647926" @default.
- W2917996640 hasPublicationYear "2018" @default.
- W2917996640 type Work @default.
- W2917996640 sameAs 2917996640 @default.
- W2917996640 citedByCount "24" @default.
- W2917996640 countsByYear W29179966402019 @default.
- W2917996640 countsByYear W29179966402020 @default.
- W2917996640 countsByYear W29179966402021 @default.
- W2917996640 countsByYear W29179966402022 @default.
- W2917996640 countsByYear W29179966402023 @default.
- W2917996640 crossrefType "proceedings-article" @default.
- W2917996640 hasAuthorship W2917996640A5036704324 @default.
- W2917996640 hasAuthorship W2917996640A5037688054 @default.
- W2917996640 hasAuthorship W2917996640A5050009901 @default.
- W2917996640 hasAuthorship W2917996640A5056940320 @default.
- W2917996640 hasAuthorship W2917996640A5063414144 @default.
- W2917996640 hasConcept C108583219 @default.
- W2917996640 hasConcept C119599485 @default.
- W2917996640 hasConcept C119857082 @default.
- W2917996640 hasConcept C127413603 @default.
- W2917996640 hasConcept C154945302 @default.
- W2917996640 hasConcept C206658404 @default.
- W2917996640 hasConcept C2779438525 @default.
- W2917996640 hasConcept C38652104 @default.
- W2917996640 hasConcept C41008148 @default.
- W2917996640 hasConceptScore W2917996640C108583219 @default.
- W2917996640 hasConceptScore W2917996640C119599485 @default.
- W2917996640 hasConceptScore W2917996640C119857082 @default.
- W2917996640 hasConceptScore W2917996640C127413603 @default.
- W2917996640 hasConceptScore W2917996640C154945302 @default.
- W2917996640 hasConceptScore W2917996640C206658404 @default.
- W2917996640 hasConceptScore W2917996640C2779438525 @default.
- W2917996640 hasConceptScore W2917996640C38652104 @default.
- W2917996640 hasConceptScore W2917996640C41008148 @default.
- W2917996640 hasLocation W29179966401 @default.
- W2917996640 hasOpenAccess W2917996640 @default.
- W2917996640 hasPrimaryLocation W29179966401 @default.
- W2917996640 hasRelatedWork W2922457425 @default.
- W2917996640 hasRelatedWork W2991087447 @default.
- W2917996640 hasRelatedWork W3007495838 @default.
- W2917996640 hasRelatedWork W3014300295 @default.
- W2917996640 hasRelatedWork W3079760979 @default.
- W2917996640 hasRelatedWork W3159901390 @default.
- W2917996640 hasRelatedWork W3164822677 @default.
- W2917996640 hasRelatedWork W3200098538 @default.
- W2917996640 hasRelatedWork W4223943233 @default.
- W2917996640 hasRelatedWork W4250304930 @default.
- W2917996640 isParatext "false" @default.
- W2917996640 isRetracted "false" @default.
- W2917996640 magId "2917996640" @default.
- W2917996640 workType "article" @default.