Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918063509> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2918063509 abstract "Data protection and the control of information flow are basic requirements for the security operation of enterprises or organizations. The data provenance of documents is a function that records the transmission of a specific document and provenance afterwards. As an important function of enterprise information security control, it has been confronted with the trouble of high management costs. Therefore, this paper attempts to recover the document content by proactively monitoring the internal traffic data of the enterprise and restore the document and find the parent document accurately through the proposed algorithm, thereby getting rid of the shackle of traditional document tracing. In order to ensure the flexibility and scalability of the streaming data restoration, this paper tries to build algorithm modules based on Flink, a streaming process platform, by migrating key computing services to its platform. In the process, the capture agent is set at the key node to collect traffic data, which is put into the stream processing system through the message queue. The stream processing system restores the file using document restoration algorithm, and finally the file is handed over to the feature extraction module. After the feature extraction module completes the file analysis, it is stored on file systems or structed data storage systems and waits for document tracking requests. The entire system solution achieved above and the daily business of the enterprise are completely seperated, while the load on the internal network flow is also very small. On the other hand, relying on the advantages of Flink's excellent distributed features, the experiments show that the data provenance results are satisfactory." @default.
- W2918063509 created "2019-03-02" @default.
- W2918063509 creator A5029211898 @default.
- W2918063509 creator A5067493894 @default.
- W2918063509 creator A5076530877 @default.
- W2918063509 date "2018-10-01" @default.
- W2918063509 modified "2023-10-05" @default.
- W2918063509 title "A Binary Feature Extraction Based Data Provenance System Implemented on Flink Platform" @default.
- W2918063509 cites W1481460540 @default.
- W2918063509 cites W1485408073 @default.
- W2918063509 cites W1552694902 @default.
- W2918063509 cites W1582521812 @default.
- W2918063509 cites W1994326726 @default.
- W2918063509 cites W2027166822 @default.
- W2918063509 cites W2060692877 @default.
- W2918063509 cites W2062118960 @default.
- W2918063509 cites W2072269087 @default.
- W2918063509 cites W2109394932 @default.
- W2918063509 cites W2126985156 @default.
- W2918063509 cites W2128581098 @default.
- W2918063509 cites W2129214848 @default.
- W2918063509 cites W2130435895 @default.
- W2918063509 cites W2131166445 @default.
- W2918063509 cites W2158899491 @default.
- W2918063509 cites W2165766811 @default.
- W2918063509 cites W2166709576 @default.
- W2918063509 cites W2326236514 @default.
- W2918063509 cites W2407590826 @default.
- W2918063509 cites W2486439025 @default.
- W2918063509 cites W2542459869 @default.
- W2918063509 cites W2566979091 @default.
- W2918063509 cites W3205686603 @default.
- W2918063509 cites W2593407125 @default.
- W2918063509 doi "https://doi.org/10.1109/cyberc.2018.00045" @default.
- W2918063509 hasPublicationYear "2018" @default.
- W2918063509 type Work @default.
- W2918063509 sameAs 2918063509 @default.
- W2918063509 citedByCount "0" @default.
- W2918063509 crossrefType "proceedings-article" @default.
- W2918063509 hasAuthorship W2918063509A5029211898 @default.
- W2918063509 hasAuthorship W2918063509A5067493894 @default.
- W2918063509 hasAuthorship W2918063509A5076530877 @default.
- W2918063509 hasConcept C111919701 @default.
- W2918063509 hasConcept C120314980 @default.
- W2918063509 hasConcept C26517878 @default.
- W2918063509 hasConcept C2780940931 @default.
- W2918063509 hasConcept C31258907 @default.
- W2918063509 hasConcept C41008148 @default.
- W2918063509 hasConcept C48044578 @default.
- W2918063509 hasConcept C77088390 @default.
- W2918063509 hasConcept C98045186 @default.
- W2918063509 hasConceptScore W2918063509C111919701 @default.
- W2918063509 hasConceptScore W2918063509C120314980 @default.
- W2918063509 hasConceptScore W2918063509C26517878 @default.
- W2918063509 hasConceptScore W2918063509C2780940931 @default.
- W2918063509 hasConceptScore W2918063509C31258907 @default.
- W2918063509 hasConceptScore W2918063509C41008148 @default.
- W2918063509 hasConceptScore W2918063509C48044578 @default.
- W2918063509 hasConceptScore W2918063509C77088390 @default.
- W2918063509 hasConceptScore W2918063509C98045186 @default.
- W2918063509 hasLocation W29180635091 @default.
- W2918063509 hasOpenAccess W2918063509 @default.
- W2918063509 hasPrimaryLocation W29180635091 @default.
- W2918063509 hasRelatedWork W109103174 @default.
- W2918063509 hasRelatedWork W2010150096 @default.
- W2918063509 hasRelatedWork W2024003055 @default.
- W2918063509 hasRelatedWork W2188414182 @default.
- W2918063509 hasRelatedWork W2370457586 @default.
- W2918063509 hasRelatedWork W2806436696 @default.
- W2918063509 hasRelatedWork W2899187603 @default.
- W2918063509 hasRelatedWork W2976943725 @default.
- W2918063509 hasRelatedWork W179010051 @default.
- W2918063509 hasRelatedWork W2856479400 @default.
- W2918063509 hasRelatedWork W2931219306 @default.
- W2918063509 hasRelatedWork W2957161581 @default.
- W2918063509 hasRelatedWork W2957653266 @default.
- W2918063509 hasRelatedWork W2962463771 @default.
- W2918063509 hasRelatedWork W2983550929 @default.
- W2918063509 hasRelatedWork W3020713067 @default.
- W2918063509 hasRelatedWork W3107839864 @default.
- W2918063509 hasRelatedWork W3145227151 @default.
- W2918063509 hasRelatedWork W3168969627 @default.
- W2918063509 hasRelatedWork W3179068221 @default.
- W2918063509 isParatext "false" @default.
- W2918063509 isRetracted "false" @default.
- W2918063509 magId "2918063509" @default.
- W2918063509 workType "article" @default.