Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918201941> ?p ?o ?g. }
- W2918201941 abstract "Abstract In laser spectroscopy, the interaction of light emitted from various types of laser sources — tunable or nontunable in their output frequency — with the atomic or molecular species of interest is used to probe the sample through a variety of spectral responses. In order to perform laser spectroscopy, suitable laser sources must be selected, which meet the requirements of the chosen spectroscopic method. This means that the laser has to provide radiation in the wavelength range of interest, has the appropriate emission characteristics (lineshape), and has a suitable energy to perform the measurements. Further requirements are pulse length (milliseconds to femtoseconds or continuous wave), repetition rate, and beam profile. Nowadays, laser radiation can be generated with most of the required parameters necessary for the respective spectroscopic application, either directly or by generating new radiation frequencies by frequency mixing of one or several laser beams in a nonlinear medium (gas, liquid, and solid). As an example, the most direct interrogation technique is absorption of laser radiation (LAS, laser absorption spectroscopy) by suitable spectroscopically allowed transitions in atoms or molecules, which are known from conventional spectroscopic methods. The increase or decrease in the laser radiation transmitted through the sample is then a measure of the amount of substance probed in the sample, which characteristically absorbs at the required wavelength. Laser light scattering methods, elastic (Rayleigh scattering (RS)) and inelastic (spontaneous Raman scattering (SRS)), are other techniques to probe the medium. In the first method, which is not species specific, the density of the medium can be interrogated, whereas the second is able to probe all species with Raman‐active vibration‐rotation transitions. There are several advantages in using laser spectroscopy instead of conventional spectroscopic techniques using conventional thermal light sources. The spectral brightness of laser beams is many orders of magnitude higher than that of thermal radiation sources, which correspondingly increase the detection sensitivity of laser spectroscopic techniques. In addition, the small linewidth of the emitted radiation dramatically increases the spectral resolution such that minor details of the spectroscopic branch investigated can be resolved. This enables more quantitative interpretations of all parameters influencing the lineshape and line intensity of the probed transition, and as such the physical and chemical environments of the probed species: temperature, pressure, velocity, chemical species, and so on. It makes laser spectroscopic techniques much more selective than conventional methods, which often are not able to separate closely spaced spectral features from different species. A third advantage of laser spectroscopic techniques is connected with the variable pulse duration and repetition frequency of lasers: the very short pulse lengths can be used successfully to probe the sample within time periods that are short compared to any other physical or chemical time development — flow, chemical reaction, pressure changes, and so on. Finally, the small spatial regions that can be probed by focusing diffraction‐limited laser beams makes laser spectroscopic techniques ideally suited for applications where high spatial resolution is required. All these advantages of laser spectroscopy are beneficial when the various techniques are applied as a diagnostic tool in combustion processes: flames constitute a complex interaction of fast chemistry with flow fields and surfaces, and therefore, a detailed understanding of combustion events often needs in situ, species‐specific optical diagnostics with high spatial and temporal resolution. In many recent applications, laser spectroscopy has become a developed technique that can even be performed by nonlaser specialists. However, numerous laser spectroscopic techniques require detailed theoretical knowledge of the spectroscopy underlying the respective technique and the use of sophisticated equipment in order to obtain meaningful results. Future development is aimed toward simplifying experimental set‐ups, data evaluation, and maintenance. This development runs parallel to the breathtaking development in laser technology that continuously increases available wavelength ranges, simplicity of use, pulse power, and repetition rates." @default.
- W2918201941 created "2019-03-11" @default.
- W2918201941 creator A5028487967 @default.
- W2918201941 creator A5029434875 @default.
- W2918201941 creator A5038918802 @default.
- W2918201941 date "2011-09-15" @default.
- W2918201941 modified "2023-10-11" @default.
- W2918201941 title "Laser‐Based Combustion Diagnostics*Update based on original article by Jürgen Wolfrum, Thomas Dreier, Volker Ebert, and Christof Schulz, Encyclopedia of Analytical Chemistry, ©2000, John Wiley & Sons Ltd." @default.
- W2918201941 cites W132354699 @default.
- W2918201941 cites W1542172355 @default.
- W2918201941 cites W1550764553 @default.
- W2918201941 cites W1592070331 @default.
- W2918201941 cites W1619210846 @default.
- W2918201941 cites W1964243829 @default.
- W2918201941 cites W1964732022 @default.
- W2918201941 cites W1964782407 @default.
- W2918201941 cites W1967232949 @default.
- W2918201941 cites W1967755951 @default.
- W2918201941 cites W1967952459 @default.
- W2918201941 cites W1968093155 @default.
- W2918201941 cites W1968575269 @default.
- W2918201941 cites W1969621452 @default.
- W2918201941 cites W1969992978 @default.
- W2918201941 cites W1970048238 @default.
- W2918201941 cites W1970786804 @default.
- W2918201941 cites W1970992105 @default.
- W2918201941 cites W1971054644 @default.
- W2918201941 cites W1971570501 @default.
- W2918201941 cites W1973044380 @default.
- W2918201941 cites W1973936707 @default.
- W2918201941 cites W1974691897 @default.
- W2918201941 cites W1974783284 @default.
- W2918201941 cites W1975003411 @default.
- W2918201941 cites W1976134063 @default.
- W2918201941 cites W1976836156 @default.
- W2918201941 cites W1976848054 @default.
- W2918201941 cites W1977102718 @default.
- W2918201941 cites W1977694351 @default.
- W2918201941 cites W1978295484 @default.
- W2918201941 cites W1978632615 @default.
- W2918201941 cites W1978675681 @default.
- W2918201941 cites W1981945919 @default.
- W2918201941 cites W1982964421 @default.
- W2918201941 cites W1983353297 @default.
- W2918201941 cites W1983362085 @default.
- W2918201941 cites W1984271556 @default.
- W2918201941 cites W1985359990 @default.
- W2918201941 cites W1985777313 @default.
- W2918201941 cites W1986609980 @default.
- W2918201941 cites W1988153693 @default.
- W2918201941 cites W1989115901 @default.
- W2918201941 cites W1989317788 @default.
- W2918201941 cites W1991307100 @default.
- W2918201941 cites W1991732082 @default.
- W2918201941 cites W1992603375 @default.
- W2918201941 cites W1992917998 @default.
- W2918201941 cites W1993186556 @default.
- W2918201941 cites W1993444671 @default.
- W2918201941 cites W1994174201 @default.
- W2918201941 cites W1994499927 @default.
- W2918201941 cites W1995293056 @default.
- W2918201941 cites W1996209614 @default.
- W2918201941 cites W1997548790 @default.
- W2918201941 cites W1999707638 @default.
- W2918201941 cites W1999980993 @default.
- W2918201941 cites W2000172899 @default.
- W2918201941 cites W2000307682 @default.
- W2918201941 cites W2002454056 @default.
- W2918201941 cites W2003308945 @default.
- W2918201941 cites W2005974034 @default.
- W2918201941 cites W2006145769 @default.
- W2918201941 cites W2006980459 @default.
- W2918201941 cites W2007012898 @default.
- W2918201941 cites W2007451859 @default.
- W2918201941 cites W2007547740 @default.
- W2918201941 cites W2008241519 @default.
- W2918201941 cites W2008702828 @default.
- W2918201941 cites W2008849489 @default.
- W2918201941 cites W2009331858 @default.
- W2918201941 cites W2010091494 @default.
- W2918201941 cites W2011357722 @default.
- W2918201941 cites W2011426819 @default.
- W2918201941 cites W2012160304 @default.
- W2918201941 cites W2012176929 @default.
- W2918201941 cites W2013937897 @default.
- W2918201941 cites W2014939009 @default.
- W2918201941 cites W2015575978 @default.
- W2918201941 cites W2016113624 @default.
- W2918201941 cites W2016132215 @default.
- W2918201941 cites W2016816038 @default.
- W2918201941 cites W2017308118 @default.
- W2918201941 cites W2019440300 @default.
- W2918201941 cites W2019957149 @default.
- W2918201941 cites W2020604550 @default.
- W2918201941 cites W2020824612 @default.
- W2918201941 cites W2020952718 @default.
- W2918201941 cites W2021041548 @default.
- W2918201941 cites W2022948043 @default.
- W2918201941 cites W2023822630 @default.
- W2918201941 cites W2023904152 @default.