Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918378401> ?p ?o ?g. }
- W2918378401 endingPage "35" @default.
- W2918378401 startingPage "24" @default.
- W2918378401 abstract "Emotions widely affect human decision-making. This fact is taken into account by affective computing with the goal of tailoring decision support to the emotional states of individuals. However, the accurate recognition of emotions within narrative documents presents a challenging undertaking due to the complexity and ambiguity of language. Performance improvements can be achieved through deep learning; yet, as demonstrated in this paper, the specific nature of this task requires the customization of recurrent neural networks with regard to bidirectional processing, dropout layers as a means of regularization, and weighted loss functions. In addition, we propose sent2affect, a tailored form of transfer learning for affective computing: here the network is pre-trained for a different task (i.e. sentiment analysis), while the output layer is subsequently tuned to the task of emotion recognition. The resulting performance is evaluated in a holistic setting across 6 benchmark datasets, where we find that both recurrent neural networks and transfer learning consistently outperform traditional machine learning. Altogether, the findings have considerable implications for the use of affective computing." @default.
- W2918378401 created "2019-03-11" @default.
- W2918378401 creator A5019793306 @default.
- W2918378401 creator A5034621580 @default.
- W2918378401 creator A5044596225 @default.
- W2918378401 creator A5081442873 @default.
- W2918378401 creator A5091142339 @default.
- W2918378401 date "2018-11-01" @default.
- W2918378401 modified "2023-10-10" @default.
- W2918378401 title "Deep learning for affective computing: Text-based emotion recognition in decision support" @default.
- W2918378401 cites W1871142974 @default.
- W2918378401 cites W1972270781 @default.
- W2918378401 cites W1988075985 @default.
- W2918378401 cites W1988733743 @default.
- W2918378401 cites W2040467972 @default.
- W2918378401 cites W2050730017 @default.
- W2918378401 cites W2056695536 @default.
- W2918378401 cites W2063372382 @default.
- W2918378401 cites W2064230935 @default.
- W2918378401 cites W2068085749 @default.
- W2918378401 cites W2074788634 @default.
- W2918378401 cites W2091084672 @default.
- W2918378401 cites W2092769001 @default.
- W2918378401 cites W2094789880 @default.
- W2918378401 cites W2111077495 @default.
- W2918378401 cites W2114509883 @default.
- W2918378401 cites W2117645142 @default.
- W2918378401 cites W2118778378 @default.
- W2918378401 cites W2119659537 @default.
- W2918378401 cites W2124811303 @default.
- W2918378401 cites W2128837546 @default.
- W2918378401 cites W2132041136 @default.
- W2918378401 cites W2140910804 @default.
- W2918378401 cites W2142241043 @default.
- W2918378401 cites W2144127426 @default.
- W2918378401 cites W2145310492 @default.
- W2918378401 cites W2147490203 @default.
- W2918378401 cites W2149628368 @default.
- W2918378401 cites W2156984202 @default.
- W2918378401 cites W2160449652 @default.
- W2918378401 cites W2165698076 @default.
- W2918378401 cites W2165938099 @default.
- W2918378401 cites W2166048187 @default.
- W2918378401 cites W2290466703 @default.
- W2918378401 cites W2345298256 @default.
- W2918378401 cites W2471350540 @default.
- W2918378401 cites W2563741043 @default.
- W2918378401 cites W2584561145 @default.
- W2918378401 cites W2584722588 @default.
- W2918378401 cites W2618843390 @default.
- W2918378401 cites W2619573303 @default.
- W2918378401 cites W2727995001 @default.
- W2918378401 cites W2741033833 @default.
- W2918378401 cites W2742330194 @default.
- W2918378401 cites W2762466482 @default.
- W2918378401 cites W2808770849 @default.
- W2918378401 cites W3008071179 @default.
- W2918378401 cites W3125189097 @default.
- W2918378401 cites W3125937743 @default.
- W2918378401 cites W4205184193 @default.
- W2918378401 cites W4231755396 @default.
- W2918378401 cites W4236533540 @default.
- W2918378401 cites W4254254617 @default.
- W2918378401 doi "https://doi.org/10.1016/j.dss.2018.09.002" @default.
- W2918378401 hasPublicationYear "2018" @default.
- W2918378401 type Work @default.
- W2918378401 sameAs 2918378401 @default.
- W2918378401 citedByCount "194" @default.
- W2918378401 countsByYear W29183784012018 @default.
- W2918378401 countsByYear W29183784012019 @default.
- W2918378401 countsByYear W29183784012020 @default.
- W2918378401 countsByYear W29183784012021 @default.
- W2918378401 countsByYear W29183784012022 @default.
- W2918378401 countsByYear W29183784012023 @default.
- W2918378401 crossrefType "journal-article" @default.
- W2918378401 hasAuthorship W2918378401A5019793306 @default.
- W2918378401 hasAuthorship W2918378401A5034621580 @default.
- W2918378401 hasAuthorship W2918378401A5044596225 @default.
- W2918378401 hasAuthorship W2918378401A5081442873 @default.
- W2918378401 hasAuthorship W2918378401A5091142339 @default.
- W2918378401 hasBestOaLocation W29183784012 @default.
- W2918378401 hasConcept C108583219 @default.
- W2918378401 hasConcept C119857082 @default.
- W2918378401 hasConcept C13280743 @default.
- W2918378401 hasConcept C136764020 @default.
- W2918378401 hasConcept C150899416 @default.
- W2918378401 hasConcept C154945302 @default.
- W2918378401 hasConcept C15744967 @default.
- W2918378401 hasConcept C162324750 @default.
- W2918378401 hasConcept C183003079 @default.
- W2918378401 hasConcept C185798385 @default.
- W2918378401 hasConcept C187736073 @default.
- W2918378401 hasConcept C199360897 @default.
- W2918378401 hasConcept C205649164 @default.
- W2918378401 hasConcept C2776035688 @default.
- W2918378401 hasConcept C2776145597 @default.
- W2918378401 hasConcept C2780451532 @default.
- W2918378401 hasConcept C2780522230 @default.