Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918402786> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2918402786 abstract "Drug combinations have the potential to improve efficacy while limiting toxicity. To robustly identify synergistic combinations, high-throughput screens using full dose-response surface are desirable but require an impractical number of data points. Screening of a sparse number of doses per drug allows to screen large numbers of drug pairs, but complicates statistical assessment of synergy. Furthermore, since the number of pairwise combinations grows with the square of the number of drugs, exploration of large screens necessitates advanced visualization tools. We describe a statistical and visualization framework for the analysis of large-scale drug combination screens. We developed an approach suitable for datasets with large number of drugs pairs even if small number of data points are available per drug pair. We demonstrate our approach using a systematic screen of all possible pairs among 108 cancer drugs applied to melanoma cell lines. In this dataset only two dose-response data points per drug pair and two data points per single drug test were available. We used a Bliss-based linear model, effectively borrowing data from the drug pairs to obtain robust estimations of the singlet viabilities, consequently yielding better estimates of drug synergy. Our method improves data consistency across dosing thus likely reducing the number of false positives. The approach allows to compute p values accounting for standard errors of the modeled singlets and combination viabilities. We further develop a synergy specificity score that distinguishes specific synergies from those arising with promiscuous drugs. Finally, we developed a summarized interactive visualization in a web application, providing efficient access to any of the 439,000 data points in the combination matrix ( http://www.cmtlab.org:3000/combo_app.html ). The code of the analysis and the web application is available at https://github.com/arnaudmgh/synergy-screen . We show that statistical modeling of single drug response from drug combination data can help determine significance of synergy and antagonism in drug combination screens with few data point per drug pair. We provide a web application for the rapid exploration of large combinatorial drug screen. All codes are available to the community, as a resource for further analysis of published data and for analysis of other drug screens." @default.
- W2918402786 created "2019-03-11" @default.
- W2918402786 creator A5004531828 @default.
- W2918402786 creator A5032742387 @default.
- W2918402786 creator A5060699951 @default.
- W2918402786 date "2019-02-18" @default.
- W2918402786 modified "2023-10-10" @default.
- W2918402786 title "Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets" @default.
- W2918402786 cites W1578932543 @default.
- W2918402786 cites W1823184461 @default.
- W2918402786 cites W1965480268 @default.
- W2918402786 cites W1976779081 @default.
- W2918402786 cites W1980181290 @default.
- W2918402786 cites W2026865092 @default.
- W2918402786 cites W2043398720 @default.
- W2918402786 cites W2044025814 @default.
- W2918402786 cites W2060737851 @default.
- W2918402786 cites W2094548766 @default.
- W2918402786 cites W2110065044 @default.
- W2918402786 cites W2111222453 @default.
- W2918402786 cites W2125789330 @default.
- W2918402786 cites W2135415614 @default.
- W2918402786 cites W2148006813 @default.
- W2918402786 cites W2152883907 @default.
- W2918402786 cites W2155626151 @default.
- W2918402786 cites W2187351898 @default.
- W2918402786 cites W2223501982 @default.
- W2918402786 cites W2990556831 @default.
- W2918402786 doi "https://doi.org/10.1186/s12859-019-2642-7" @default.
- W2918402786 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6378741" @default.
- W2918402786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30777010" @default.
- W2918402786 hasPublicationYear "2019" @default.
- W2918402786 type Work @default.
- W2918402786 sameAs 2918402786 @default.
- W2918402786 citedByCount "22" @default.
- W2918402786 countsByYear W29184027862019 @default.
- W2918402786 countsByYear W29184027862020 @default.
- W2918402786 countsByYear W29184027862021 @default.
- W2918402786 countsByYear W29184027862022 @default.
- W2918402786 countsByYear W29184027862023 @default.
- W2918402786 crossrefType "journal-article" @default.
- W2918402786 hasAuthorship W2918402786A5004531828 @default.
- W2918402786 hasAuthorship W2918402786A5032742387 @default.
- W2918402786 hasAuthorship W2918402786A5060699951 @default.
- W2918402786 hasBestOaLocation W29184027861 @default.
- W2918402786 hasConcept C112789634 @default.
- W2918402786 hasConcept C119857082 @default.
- W2918402786 hasConcept C124101348 @default.
- W2918402786 hasConcept C154945302 @default.
- W2918402786 hasConcept C184898388 @default.
- W2918402786 hasConcept C21080849 @default.
- W2918402786 hasConcept C36464697 @default.
- W2918402786 hasConcept C41008148 @default.
- W2918402786 hasConcept C64869954 @default.
- W2918402786 hasConceptScore W2918402786C112789634 @default.
- W2918402786 hasConceptScore W2918402786C119857082 @default.
- W2918402786 hasConceptScore W2918402786C124101348 @default.
- W2918402786 hasConceptScore W2918402786C154945302 @default.
- W2918402786 hasConceptScore W2918402786C184898388 @default.
- W2918402786 hasConceptScore W2918402786C21080849 @default.
- W2918402786 hasConceptScore W2918402786C36464697 @default.
- W2918402786 hasConceptScore W2918402786C41008148 @default.
- W2918402786 hasConceptScore W2918402786C64869954 @default.
- W2918402786 hasFunder F4320307874 @default.
- W2918402786 hasIssue "1" @default.
- W2918402786 hasLocation W29184027861 @default.
- W2918402786 hasLocation W29184027862 @default.
- W2918402786 hasLocation W29184027863 @default.
- W2918402786 hasLocation W29184027864 @default.
- W2918402786 hasOpenAccess W2918402786 @default.
- W2918402786 hasPrimaryLocation W29184027861 @default.
- W2918402786 hasRelatedWork W1556917948 @default.
- W2918402786 hasRelatedWork W2063329049 @default.
- W2918402786 hasRelatedWork W2070589300 @default.
- W2918402786 hasRelatedWork W2127533281 @default.
- W2918402786 hasRelatedWork W2140672396 @default.
- W2918402786 hasRelatedWork W2161136734 @default.
- W2918402786 hasRelatedWork W2546192109 @default.
- W2918402786 hasRelatedWork W2952858462 @default.
- W2918402786 hasRelatedWork W2472056907 @default.
- W2918402786 hasRelatedWork W3135226178 @default.
- W2918402786 hasVolume "20" @default.
- W2918402786 isParatext "false" @default.
- W2918402786 isRetracted "false" @default.
- W2918402786 magId "2918402786" @default.
- W2918402786 workType "article" @default.